You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import {RetrievalQAChain} from 'langchain/chains';
import {HNSWLib} from "langchain/vectorstores";
import {RecursiveCharacterTextSplitter} from 'langchain/text_splitter';
import {LLamaEmbeddings} from "llama-node/dist/extensions/langchain.js";
import {LLM} from "llama-node";
import {LLamaCpp} from "llama-node/dist/llm/llama-cpp.js";
import * as fs from 'fs';
import * as path from 'path';
const txtFilename = "TrainData";
const txtPath = ./${txtFilename}.txt;
const VECTOR_STORE_PATH = ${txtFilename}.index;
const model = path.resolve(process.cwd(), './h2ogptq-oasst1-512-30B.ggml.q5_1.bin');
const llama = new LLM(LLamaCpp);
const config = {
path: model,
enableLogging: true,
nCtx: 1024,
nParts: -1,
seed: 0,
f16Kv: false,
logitsAll: false,
vocabOnly: false,
useMlock: false,
embedding: true,
useMmap: true,
};
var vectorStore;
const run = async () => {
await llama.load(config);
if (fs.existsSync(VECTOR_STORE_PATH)) {
console.log('Vector Exists..');
vectorStore = await HNSWLib.fromExistingIndex(VECTOR_STORE_PATH, new LLamaEmbeddings({maxConcurrency: 1}, llama));
} else {
console.log('Creating Documents');
const text = fs.readFileSync(txtPath, 'utf8');
const textSplitter = new RecursiveCharacterTextSplitter({chunkSize: 1000});
const docs = await textSplitter.createDocuments([text]);
console.log('Creating Vector');
vectorStore = await HNSWLib.fromDocuments(docs, new LLamaEmbeddings({maxConcurrency: 1}, llama));
await vectorStore.save(VECTOR_STORE_PATH);
}
console.log('Testing Vector via Similarity Search');
const resultOne = await vectorStore.similaritySearch("what is a template", 1);
console.log(resultOne);
console.log('Testing Vector via RetrievalQAChain');
const chain = RetrievalQAChain.fromLLM(llama, vectorStore.asRetriever());
const res = await chain.call({
query: "what is a template",
});
console.log({res});
};
run();
It is only using 4 CPU at the time of "vectorStore = await HNSWLib.fromDocuments(docs, new LLamaEmbeddings({maxConcurrency: 1}, llama));"
Can we change anything for it to use more than 4 CPU?
The text was updated successfully, but these errors were encountered:
This is the code that I am using
import {RetrievalQAChain} from 'langchain/chains';
import {HNSWLib} from "langchain/vectorstores";
import {RecursiveCharacterTextSplitter} from 'langchain/text_splitter';
import {LLamaEmbeddings} from "llama-node/dist/extensions/langchain.js";
import {LLM} from "llama-node";
import {LLamaCpp} from "llama-node/dist/llm/llama-cpp.js";
import * as fs from 'fs';
import * as path from 'path';
const txtFilename = "TrainData";
const txtPath = ./${txtFilename}.txt;
const VECTOR_STORE_PATH = ${txtFilename}.index;
const model = path.resolve(process.cwd(), './h2ogptq-oasst1-512-30B.ggml.q5_1.bin');
const llama = new LLM(LLamaCpp);
const config = {
path: model,
enableLogging: true,
nCtx: 1024,
nParts: -1,
seed: 0,
f16Kv: false,
logitsAll: false,
vocabOnly: false,
useMlock: false,
embedding: true,
useMmap: true,
};
var vectorStore;
const run = async () => {
await llama.load(config);
if (fs.existsSync(VECTOR_STORE_PATH)) {
console.log('Vector Exists..');
vectorStore = await HNSWLib.fromExistingIndex(VECTOR_STORE_PATH, new LLamaEmbeddings({maxConcurrency: 1}, llama));
} else {
console.log('Creating Documents');
const text = fs.readFileSync(txtPath, 'utf8');
const textSplitter = new RecursiveCharacterTextSplitter({chunkSize: 1000});
const docs = await textSplitter.createDocuments([text]);
console.log('Creating Vector');
vectorStore = await HNSWLib.fromDocuments(docs, new LLamaEmbeddings({maxConcurrency: 1}, llama));
await vectorStore.save(VECTOR_STORE_PATH);
}
console.log('Testing Vector via Similarity Search');
const resultOne = await vectorStore.similaritySearch("what is a template", 1);
console.log(resultOne);
console.log('Testing Vector via RetrievalQAChain');
const chain = RetrievalQAChain.fromLLM(llama, vectorStore.asRetriever());
const res = await chain.call({
query: "what is a template",
});
console.log({res});
};
run();
It is only using 4 CPU at the time of "vectorStore = await HNSWLib.fromDocuments(docs, new LLamaEmbeddings({maxConcurrency: 1}, llama));"
Can we change anything for it to use more than 4 CPU?
The text was updated successfully, but these errors were encountered: