-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_mt.py
executable file
·107 lines (99 loc) · 3.61 KB
/
predict_mt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import pickle
import torch
from torch import cuda
import numpy as np
import time
import logging
from tokenizer import Tokenizer
from utils import *
from torch.nn.utils.rnn import pad_sequence
parser = argparse.ArgumentParser()
parser.add_argument('--data_file', default='data/MT/test-daxy.en')
parser.add_argument('--out_file', default='mt-pred-daxy.txt')
parser.add_argument('--model_path', default='mt.pt')
parser.add_argument('--gpu', default=0, type=int, help='which gpu to use')
parser.add_argument('--num_samples', default=1000, type=int, help='samples')
parser.add_argument('--seed', default=3435, type=int, help='random seed')
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cuda.set_device(args.gpu)
device = torch.device("cuda:"+str(args.gpu))
data = open(args.data_file, "r")
model_checkpoint = torch.load(args.model_path)
encoder = model_checkpoint["encoder"]
decoder = model_checkpoint["decoder"]
parser = model_checkpoint["enc_parser"]
x_tokenizer = model_checkpoint["x_tokenizer"]
y_tokenizer = model_checkpoint["y_tokenizer"]
model_args = model_checkpoint["args"]
encoder.to(device)
decoder.to(device)
parser.to(device)
out = open(args.out_file, "w")
eval(data, encoder, decoder, parser, device, x_tokenizer, y_tokenizer, model_args, out)
out.close()
def eval(data, encoder, decoder, parser, device, x_tokenizer, y_tokenizer, model_args, out):
num_sents = 0
num_words_pred = 0
total_nll_pred = 0.
for d in data:
x = d.strip().split()
x_len = len(x)
x_tensor, _, _ = x_tokenizer.convert_batch([x])
x_tensor = x_tensor.to(device)
x_lengths = torch.Tensor([len(x)]).long().to(device)
_, x_spans, _, x_actions, _ = parser(x_tensor, x_lengths)
with torch.no_grad():
node_features, node_spans = encoder(x_tensor, x_lengths,
spans = x_spans)
y_preds = decoder.decode(node_features, node_spans, y_tokenizer,
num_samples = args.num_samples)
best_pred = [""]
best_nll = 1e5
best_length = 0
best_ppl = 1e5
for y_pred in y_preds[0]:
if len(y_pred) < 2:
continue
y_pred = [y_pred]
y_pred_tensor, _, _ = y_tokenizer.convert_batch(y_pred)
y_pred_tensor = y_pred_tensor.to(device)
y_pred_lengths = torch.Tensor([len(y_pred[0])]).long().to(device)
with torch.no_grad():
if len(y_pred[0]) > 10:
continue
pred_nll = decoder(y_pred_tensor, y_pred_lengths,
node_features, node_spans, argmax=False,
x_str = y_pred)
ppl = np.exp(pred_nll.item() / y_pred_lengths.sum().item())
# if pred_nll.item() < best_nll:
if ppl < best_ppl:
best_ppl = ppl
best_pred = y_pred[0]
best_nll = pred_nll.item()
total_nll_pred += best_nll
best_length = y_pred_lengths.sum().item()
num_words_pred += best_length
y_pred_tree, pred_all_spans, pred_all_spans_node = decoder(
y_pred_tensor, y_pred_lengths, node_features, node_spans,
x_str=y_pred, argmax=True)
pred = " ".join(best_pred)
src = " ".join(x)
out.write(pred + "\n")
x_parse = get_tree(x_actions[0], x)
print("SRC PARSE: %s" % x_parse)
print("SRC: %s\nPRED: %s" % (" ".join(x), pred))
if __name__ == '__main__':
args = parser.parse_args()
main(args)