-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathswgmm.py
337 lines (292 loc) · 13.8 KB
/
swgmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import numpy as np
import subprocess
import tensorflow as tf
from matplotlib import pyplot as pl
# Retrieve Old Faithful geyser data used in PRML.
# This dataset is somewhat difficult to obtain: this time I read it from R.
def get_faithful_data():
text = subprocess.check_output(['r', '-q', '-e', 'faithful'])
text = text.decode('ascii')
text = text.splitlines()
ret = []
for line in text:
values = line.split()
if (len(values) == 3):
x = float(values[1])
y = float(values[2])
ret.append([x, y])
return np.array(ret, dtype=np.float64)
# Normalize dataset to enhance optimizer.
faithful = get_faithful_data()
faithful -= np.mean(faithful, axis=0)[None, :]
faithful /= np.std(faithful, axis=0)[None, :]
# The following lines render Old Faithful dataset and 2D Gaussian distributions.
# mu represents mean, and var represents standard deviations for x and y axes.
def draw_ring(mu, dev, alpha=1):
angles = np.linspace(0, 2 * np.pi, 100)
x = mu[0] + dev[0] * np.cos(angles)
y = mu[1] + dev[1] * np.sin(angles)
pl.plot(x, y, 'b-', alpha=alpha)
def draw_directions(directions):
for i in range(len(directions)):
d = directions[i]
pl.plot([d[0] * -5, d[0] * 5], [d[1] * -5, d[1] * 5], 'b-', alpha=.125)
def draw(pi, mu, var, directions):
draw_directions(directions)
pl.plot(faithful[:, 0], faithful[:, 1], 'b+', alpha=.5)
pl.plot(mu[:, 0], mu[:, 1], 'go')
for i in range(len(mu)):
draw_ring(mu[i], np.sqrt(var[i]))
draw_ring(mu[i], np.sqrt(pi[i] / pi.mean()) * np.sqrt(var[i]), alpha=.25)
pl.xlim(-2.5, 2.5)
pl.ylim(-2.5, 2.5)
# Calculate variants of Gaussian integrals.
def integrate_emx2(a, b):
return .5 * np.sqrt(np.pi) * (tf.math.erf(b) - tf.math.erf(a))
def integrate_xemx2(a, b):
return .5 * (tf.exp(-a * a) - tf.exp(-b * b))
def integrate_x2emx2(a, b):
A = .25 * np.sqrt(np.pi) * tf.math.erf(a) - .5 * a * tf.exp(-a * a)
B = .25 * np.sqrt(np.pi) * tf.math.erf(b) - .5 * b * tf.exp(-b * b)
return B - A
# Execute M step of EM algorithm.
# This method is just used to obtain initial parameters for SWGMM.
def calc_mstep(z):
pi = z.sum(0) / z.sum()
mu = (z[:, :, None] * faithful[:, None, :]).sum(0) / z.sum(0)[:, None]
var = (z[:, :, None] * ((faithful[:, None, :] - mu[None, :, :]) ** 2)).sum(0)
var /= z.sum(0)[:, None]
return pi, mu, var
# Initialize responsibility using uniform random variables and make initial values for latent variables.
# This configuration forces the estimator to consume a large number of iterations:
# it thus makes easier to watch the character of learning algorithms.
def sample_init_parameter():
z = np.random.dirichlet(np.ones(nclass), len(faithful))
pi, mu, var = calc_mstep(z)
lpi = tf.Variable(np.log(pi))
mu = tf.Variable(mu)
lv = tf.Variable(np.log(var))
return lpi, mu, lv
# Sample direction vector for Radon transform.
def sample_direction():
angle = 2 * np.pi * np.random.rand()
return tf.constant([np.cos(angle), np.sin(angle)])
# Sample a set of directions, that used for approximating sliced Wasserstein distance.
# If fixed parameter is filled with vectors, some of the return values are fixed with them.
def sample_directions(ndirection, fixed=None):
if (fixed is not None):
assert len(fixed) <= ndirection
ret = list(fixed)
else:
ret = []
while (len(ret) < ndirection):
ret.append(sample_direction())
ret = np.array(ret)
return tf.constant(ret, dtype=tf.float64)
# Compute projected coordinations of vectors using inner-product with direction vector.
def project_vector(x, direction):
if (x.shape.rank == 1):
x = x[None, :]
ret = tf.reduce_sum(x * direction[None, :], axis=1)
return tf.squeeze(ret)
# Compute projected variance of diagonal matrix diag(V).
def project_variance(var, direction):
if (var.shape.rank == 1):
var = var[None, :]
ret = tf.reduce_sum(var * (direction * direction)[None, :], axis=1)
return tf.squeeze(ret)
# Calculate PDF of one-dimensional Gaussian distribution.
def gaussian_pdf(x, mu, var):
x = tf.convert_to_tensor(x, dtype=tf.float64)
mu = tf.convert_to_tensor(mu, dtype=tf.float64)
prec = 1. / tf.convert_to_tensor(var, dtype=tf.float64)
if (x.shape.rank == 0):
x = x[None]
if (mu.shape.rank == 0):
mu = mu[None]
prec = prec[None]
ret = tf.sqrt(.5 * prec[None, :] / np.pi)
ret *= tf.exp(-.5 * prec[None, :] * (x[:, None] - mu[None, :]) * (x[:, None] - mu[None, :]))
return tf.squeeze(ret)
# Calculate CDF of one-dimensional Gaussian distribution.
def gaussian_cdf(x, mu, var):
x = tf.convert_to_tensor(x, dtype=tf.float64)
mu = tf.convert_to_tensor(mu, dtype=tf.float64)
var = tf.convert_to_tensor(var, dtype=tf.float64)
if (x.shape.rank == 0):
x = x[None]
if (mu.shape.rank == 0):
mu = mu[None]
ret = .5 * (1 + tf.math.erf((x[:, None] - mu[None, :]) / tf.sqrt(2 * var)))
return tf.squeeze(ret)
# Calculate PDF of one-dimensional Gaussian mixture distribution.
def gaussian_mixture_pdf(x, pi, mu, var):
pi = tf.convert_to_tensor(pi, dtype=tf.float64)
return tf.reduce_sum(pi[None, :] * gaussian_pdf(x, mu, var), axis=1)
# Calculate CDF of one-dimensional Gaussian mixture distribution.
def gaussian_mixture_cdf(x, pi, mu, var):
pi = tf.convert_to_tensor(pi, dtype=tf.float64)
return tf.reduce_sum(pi[None, :] * gaussian_cdf(x, mu, var), axis=1)
# Calculate inverse of CDF of one-dimensional Gaussian mixture distribution.
# This function uses binary search to compute the value, utilizing that the function is monotonic.
# This function provides custom gradient for the sake of automatic differentiation.
@tf.custom_gradient
def gaussian_mixture_cdfinv(r, pi, mu, var):
r = tf.convert_to_tensor(r, dtype=tf.float64)
pi = tf.convert_to_tensor(pi, dtype=tf.float64)
mu = tf.convert_to_tensor(mu, dtype=tf.float64)
var = tf.convert_to_tensor(var, dtype=tf.float64)
if (r.shape.rank == 0):
r = r[None]
xmin = -1
xmax = 1
while (tf.reduce_sum(pi * gaussian_cdf(xmin, mu, var)) > r[0]):
xmin *= 2
while (tf.reduce_sum(pi * gaussian_cdf(xmax, mu, var)) < r[-1]):
xmax *= 2
xmin = tf.tile(tf.convert_to_tensor([xmin], dtype=tf.float64), r.shape)
xmax = tf.tile(tf.convert_to_tensor([xmax], dtype=tf.float64), r.shape)
for i in range(50):
xmid = (xmin + xmax) * .5
cur_ratio = tf.reduce_sum(pi[None, :] * gaussian_cdf(xmid, mu, var), axis=1)
mask = tf.cast(r < cur_ratio, tf.float64)
xmin = xmin * mask + xmid * (1 - mask)
xmax = xmid * mask + xmax * (1 - mask)
ret = (xmin + xmax) * .5
def grad(_dx):
gpdf = gaussian_pdf(ret, mu, var)
gmpdf = gaussian_mixture_pdf(ret, pi, mu, var)
_dr = _dx / gaussian_mixture_pdf(ret, pi, mu, var)
_dpi = -tf.reduce_sum(_dx[:, None] * gaussian_cdf(ret, mu, var) / gmpdf[:, None], axis=0)
_dmu = tf.reduce_sum(_dx[:, None] * pi[None, :] * gpdf / gmpdf[:, None], axis=0)
_dvar = tf.reduce_sum(_dx[:, None] * pi[None, :] / (2 * var[None, :]) * (ret[:, None] - mu[None, :]) * gpdf / gmpdf[:, None], axis=0)
return [_dr, _dpi, _dmu, _dvar]
return ret, grad
# Compute Wasserstein distance between observed data X and a one-dimensional Gaussian mixture distribution.
# It implements 1-Wasserstein and 2-Wasserstein only.
def gaussian_mixture_wasserstein_loss(x, pi, mu, var, order):
# Sort input data for computing alignment with Gaussian mixture.
x = tf.sort(x)
nx = x.shape[0]
# Calculate variances of the distributions.
prec = 1. / var
# Split Gaussian mixture distribution into N parts to compute transportation cost.
# It also computes the split point between right-facing transporation and left-facing transportation
# to compute 1-Wasserstein integral properly.
ratio = tf.cast(tf.linspace(1. / nx, 1 - 1. / nx, nx - 1), tf.float64)
partition = gaussian_mixture_cdfinv(ratio, pi, mu, var)
partition_left = tf.concat([[-1e+10], partition], axis=0)
partition_right = tf.concat([partition, [1e+10]], axis=0)
partition_mid = tf.minimum(tf.maximum(partition_left, x), partition_right)
# Change of variables, for later integrals
integral_left = (partition_left[:, None] - mu[None, :]) * tf.sqrt(.5 * prec)[None, :]
integral_mid = (partition_mid[:, None] - mu[None, :]) * tf.sqrt(.5 * prec)[None, :]
integral_right = (partition_right[:, None] - mu[None, :]) * tf.sqrt(.5 * prec)[None, :]
if (order == 1):
loss_left = (x[:, None] - mu[None, :]) * integrate_emx2(integral_left, integral_mid)
loss_left -= 1. / tf.sqrt(.5 * prec[None, :]) * integrate_xemx2(integral_left, integral_mid)
loss_left *= tf.cast(1. / tf.sqrt(np.pi), tf.float64)
loss_right = 1. / tf.sqrt(.5 * prec[None, :]) * integrate_xemx2(integral_mid, integral_right)
loss_right -= (x[:, None] - mu[None, :]) * integrate_emx2(integral_mid, integral_right)
loss_right *= tf.cast(1. / tf.sqrt(np.pi), tf.float64)
return pi[None, :] * (loss_left + loss_right)
elif (order == 2):
diff = x[:, None] - mu[None, :]
loss = (diff * diff) * integrate_emx2(integral_left, integral_right)
loss -= 2 * diff / tf.sqrt(.5 * prec[None, :]) * integrate_xemx2(integral_left, integral_right)
loss += 1. / (.5 * prec[None, :]) * integrate_x2emx2(integral_left, integral_right)
loss *= tf.cast(1. / tf.sqrt(np.pi), tf.float64)
return pi[None, :] * loss
else:
assert False
def estimate(nstep, ndirection, fixed_directions=None, order=2, use_adam=True):
faith = tf.constant(faithful)
lpi, mu, lv = sample_init_parameter()
if use_adam:
opt = tf.keras.optimizers.Adam(learning_rate=.2)
else:
opt = tf.keras.optimizers.RMSprop(learning_rate=.05, centered=True)
loss_history = []
for istep in range(nstep):
directions = sample_directions(ndirection, fixed_directions)
# Compute approximate sliced Wasserstein distance between empirical and model distributions.
def sw_loss():
total_loss = 0
for idirection in range(ndirection):
direction = directions[idirection]
faith_proj = project_vector(faith, direction)
lpi_normal = lpi - tf.reduce_logsumexp(lpi)
pi = tf.exp(lpi_normal)
mu_proj = project_vector(mu, direction)
var_proj = project_variance(tf.exp(lv), direction)
projected_loss = gaussian_mixture_wasserstein_loss(faith_proj, pi, mu_proj, var_proj, order)
total_loss += tf.reduce_sum(projected_loss)
return total_loss / ndirection
# Render inference situation to graphs.
# Inference status (left-top), Wasserstein distance along x-axis (left-middle),
# alignment of empirical and estimated CDFs (left-bottom),
# and the computed approximate sliced Wasserstein distance (right).
def draw_figure():
pl.clf()
pl.subplot(321)
lpi_normal = lpi - tf.reduce_logsumexp(lpi)
pi = tf.exp(lpi_normal)
draw(pi.numpy(), mu.numpy(), np.exp(lv.numpy()), directions.numpy())
pl.subplot(323)
direction = tf.convert_to_tensor([1, 0], dtype=tf.float64)
faith_proj = tf.sort(project_vector(faith, direction))
mu_proj = project_vector(mu, direction)
var_proj = project_variance(tf.exp(lv), direction)
loss = gaussian_mixture_wasserstein_loss(faith_proj, pi, mu_proj, var_proj, order=1)
loss = tf.reduce_sum(loss, axis=1)
pl.plot(faith_proj, loss, 'b+', alpha=.5)
pl.xlim(-2.5, 2.5)
pl.ylim(0, 0.01)
pl.subplot(325)
nx = faith_proj.shape[0]
ratio = tf.cast(tf.linspace(1. / (2 * nx), (2 * nx - 1) / (2 * nx), nx), tf.float64)
p = gaussian_mixture_cdfinv(ratio, pi, mu_proj, var_proj)
pl.plot(faith_proj, ratio)
pl.plot(p, ratio)
pl.xlim(-2.5, 2.5)
pl.ylim(0, 1)
pl.subplot(122)
pl.plot(loss_history)
pl.xlim(0, nstep)
pl.ylim(0, (loss_history[0] * 1.2).numpy())
pl.tight_layout()
# Update variables.
opt.minimize(sw_loss, var_list=[lpi, mu, lv])
# Compute current loss.
loss_history.append(sw_loss() ** (1. / order))
# Render graphs per iteration.
# Render twice on the first iteration because tight_layout runs glitchy on my environment.
# (This behavior is observed on my environment, macOS Mojave + Python3,
# this code can be safely removed if nothing will happen on your machine)
draw_figure()
if (istep == 0):
draw_figure()
pl.pause(.1)
if (__name__ == '__main__'):
# Set graph size.
pl.figure(figsize=[7.5, 5])
# Set the number of Gaussian components and the number of iterations.
nclass = 5
nstep = 100
# Set the number of directions used for sliced Wasserstein distance approximation.
# The calculation converges to the exact SW distance when ndirection = infty.
ndirection = 5
# If you would like to fix some of the direction vectors, please put it here.
fixed_directions = None
# fixed_directions = [[1, 0]]
# fixed_directions = [[1, 0], [0, 1]]
# fixed_directions = [[1., 0.], [0., 1.], [np.sqrt(2), np.sqrt(2)]]
# fixed_directions = [[1., 0.], [0., 1.], [np.sqrt(2), np.sqrt(2)], [np.sqrt(2), -np.sqrt(2)]]
# Set the order of Wasserstein distance.
# This implementation allows one and two only.
order = 2
# Determine to use Adam or RMSprop.
use_adam = True
estimate(nstep, ndirection, fixed_directions, order, use_adam)
# Halt the program when inference is done.
pl.show()