-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_early_stop.py
236 lines (192 loc) · 7.18 KB
/
main_early_stop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import json
import os
from datetime import datetime
from time import time
import torch
import torch.nn.functional as F
from data_preprocess import degree_as_feature, node_label_as_feature
from networks import GraphClassifier
from torch import Tensor
from torch.utils.data import random_split
from utils import get_stats, parse_args
import dgl
from dgl.data import LegacyTUDataset
from dgl.dataloading import GraphDataLoader
def compute_loss(
cls_logits: Tensor,
labels: Tensor,
logits_s1: Tensor,
logits_s2: Tensor,
epoch: int,
total_epochs: int,
device: torch.device,
):
# classification loss
classify_loss = F.nll_loss(cls_logits, labels.to(device))
# loss for vertex infomax pooling
scale1, scale2 = logits_s1.size(0) // 2, logits_s2.size(0) // 2
s1_label_t, s1_label_f = torch.ones(scale1), torch.zeros(scale1)
s2_label_t, s2_label_f = torch.ones(scale2), torch.zeros(scale2)
s1_label = torch.cat((s1_label_t, s1_label_f), dim=0).to(device)
s2_label = torch.cat((s2_label_t, s2_label_f), dim=0).to(device)
pool_loss_s1 = F.binary_cross_entropy_with_logits(logits_s1, s1_label)
pool_loss_s2 = F.binary_cross_entropy_with_logits(logits_s2, s2_label)
pool_loss = (pool_loss_s1 + pool_loss_s2) / 2
loss = classify_loss + (2 - epoch / total_epochs) * pool_loss
return loss
def train(
model: torch.nn.Module,
optimizer,
trainloader,
device,
curr_epoch,
total_epochs,
):
model.train()
total_loss = 0.0
num_batches = len(trainloader)
for batch in trainloader:
optimizer.zero_grad()
batch_graphs, batch_labels = batch
batch_graphs = batch_graphs.to(device)
batch_labels = batch_labels.long().to(device)
out, l1, l2 = model(batch_graphs, batch_graphs.ndata["feat"])
loss = compute_loss(
out, batch_labels, l1, l2, curr_epoch, total_epochs, device
)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / num_batches
@torch.no_grad()
def test(model: torch.nn.Module, loader, device):
model.eval()
correct = 0.0
num_graphs = 0
for batch in loader:
batch_graphs, batch_labels = batch
num_graphs += batch_labels.size(0)
batch_graphs = batch_graphs.to(device)
batch_labels = batch_labels.long().to(device)
out, _, _ = model(batch_graphs, batch_graphs.ndata["feat"])
pred = out.argmax(dim=1)
correct += pred.eq(batch_labels).sum().item()
return correct / num_graphs
@torch.no_grad()
def validate(model: torch.nn.Module, loader, device, curr_epoch, total_epochs):
model.eval()
tt_loss = 0.0
correct = 0.0
num_graphs = 0
num_batchs = len(loader)
for batch in loader:
batch_graphs, batch_labels = batch
num_graphs += batch_labels.size(0)
batch_graphs = batch_graphs.to(device)
batch_labels = batch_labels.long().to(device)
out, l1, l2 = model(batch_graphs, batch_graphs.ndata["feat"])
tt_loss += compute_loss(
out, batch_labels, l1, l2, curr_epoch, total_epochs, device
).item()
pred = out.argmax(dim=1)
correct += pred.eq(batch_labels).sum().item()
return correct / num_graphs, tt_loss / num_batchs
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
dataset = LegacyTUDataset(args.dataset, raw_dir=args.dataset_path)
# add self loop. We add self loop for each graph here since the function "add_self_loop" does not
# support batch graph.
for i in range(len(dataset)):
dataset.graph_lists[i] = dgl.remove_self_loop(dataset.graph_lists[i])
dataset.graph_lists[i] = dgl.add_self_loop(dataset.graph_lists[i])
# use degree as node feature
if args.degree_as_feature:
dataset = degree_as_feature(dataset)
mode = "concat"
else:
mode = "replace"
dataset = node_label_as_feature(dataset, mode=mode)
num_training = int(len(dataset) * 0.8)
num_val = int(len(dataset) * 0.1)
num_test = len(dataset) - num_training - num_val
train_set, val_set, test_set = random_split(
dataset, [num_training, num_val, num_test]
)
train_loader = GraphDataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=1
)
val_loader = GraphDataLoader(
val_set, batch_size=args.batch_size, num_workers=1
)
test_loader = GraphDataLoader(
test_set, batch_size=args.batch_size, num_workers=1
)
device = torch.device(args.device)
# Step 2: Create model =================================================================== #
num_feature, num_classes, _ = dataset.statistics()
args.in_dim = int(num_feature)
args.out_dim = int(num_classes)
args.edge_feat_dim = 0 # No edge feature in datasets that we use.
model = GraphClassifier(args).to(device)
# Step 3: Create training components ===================================================== #
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.lr,
amsgrad=True,
weight_decay=args.weight_decay,
)
# Step 4: training epoches =============================================================== #
best_test_acc = 0.0
best_epoch = -1
train_times = []
bad_count = 0
best_val_loss = float("inf")
for e in range(args.epochs):
s_time = time()
train_loss = train(
model, optimizer, train_loader, device, e, args.epochs
)
train_times.append(time() - s_time)
_, val_loss = validate(model, val_loader, device, e, args.epochs)
test_acc = test(model, test_loader, device)
if best_val_loss > val_loss:
best_val_loss = val_loss
best_epoch = e
bad_count = 0
best_test_acc = test_acc
else:
bad_count += 1
if bad_count > args.patience:
break
if (e + 1) % args.print_every == 0:
log_format = (
"Epoch {}: loss={:.4f}, test_acc={:.4f}, best_test_acc={:.4f}"
)
print(log_format.format(e + 1, train_loss, test_acc, best_test_acc))
print(
"Best Epoch {}, final test acc {:.4f}".format(best_epoch, best_test_acc)
)
return best_test_acc, sum(train_times) / len(train_times)
if __name__ == "__main__":
args = parse_args()
res = []
train_times = []
for i in range(args.num_trials):
print("Trial {}/{}".format(i + 1, args.num_trials))
acc, train_time = main(args)
# acc, train_time = 0, 0
res.append(acc)
train_times.append(train_time)
mean, err_bd = get_stats(res, conf_interval=False)
print("mean acc: {:.4f}, error bound: {:.4f}".format(mean, err_bd))
out_dict = {
"hyper-parameters": vars(args),
"result_date": str(datetime.now()),
"result": "{:.4f}(+-{:.4f})".format(mean, err_bd),
"train_time": "{:.4f}".format(sum(train_times) / len(train_times)),
"details": res,
}
with open(
os.path.join(args.output_path, "{}.log".format(args.dataset)), "w"
) as f:
json.dump(out_dict, f, sort_keys=True, indent=4)