-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplain_main.py
66 lines (54 loc) · 2.17 KB
/
explain_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import os
import dgl
from gnnlens import Writer
import torch as th
from dgl import load_graphs
from dgl.nn import GNNExplainer
from models import Model
from dgl.data import BAShapeDataset, BACommunityDataset, TreeCycleDataset, TreeGridDataset
def main(args):
if args.dataset == 'BAShape':
dataset = BAShapeDataset(seed=0)
elif args.dataset == 'BACommunity':
dataset = BACommunityDataset(seed=0)
elif args.dataset == 'TreeCycle':
dataset = TreeCycleDataset(seed=0)
elif args.dataset == 'TreeGrid':
dataset = TreeGridDataset(seed=0)
graph = dataset[0]
labels = graph.ndata['label']
feats = graph.ndata['feat']
num_classes = dataset.num_classes
# load an existing model
model_path = os.path.join('./', f'model_{args.dataset}.pth')
model_stat_dict = th.load(model_path)
model = Model(feats.shape[-1], num_classes)
model.load_state_dict(model_stat_dict)
# Choose the first node of the class 1 for explaining prediction
target_class = 1
for n_idx, n_label in enumerate(labels):
if n_label == target_class:
break
explainer = GNNExplainer(model, num_hops=3)
new_center, sub_graph, feat_mask, edge_mask = explainer.explain_node(n_idx, graph, feats)
# gnnlens2
# Specify the path to create a new directory for dumping data files.
writer = Writer('gnn_subgraph')
writer.add_graph(name=args.dataset, graph=graph,
nlabels=labels, num_nlabel_types=num_classes)
writer.add_subgraph(graph_name=args.dataset,
subgraph_name='GNNExplainer',
node_id=n_idx,
subgraph_nids=sub_graph.ndata[dgl.NID],
subgraph_eids=sub_graph.edata[dgl.EID],
subgraph_eweights=edge_mask)
# Finish dumping
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Demo of GNN explainer in DGL')
parser.add_argument('--dataset', type=str, default='BAShape',
choices=['BAShape', 'BACommunity', 'TreeCycle', 'TreeGrid'])
args = parser.parse_args()
print(args)
main(args)