-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_function.py
175 lines (145 loc) · 5.65 KB
/
eval_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import torch
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import (GridSearchCV, ShuffleSplit,
train_test_split)
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import OneHotEncoder, normalize
def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
# transform targets to one-hot vector
one_hot_encoder = OneHotEncoder(categories="auto", sparse=False)
y = one_hot_encoder.fit_transform(y.reshape(-1, 1)).astype(np.bool)
# normalize x
X = normalize(X, norm="l2")
# set random state, this will ensure the dataset will be split exactly the same throughout training
rng = np.random.RandomState(data_random_seed)
accuracies = []
for _ in range(repeat):
# different random split after each repeat
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.8, random_state=rng
)
# grid search with one-vs-rest classifiers
logreg = LogisticRegression(solver="liblinear")
c = 2.0 ** np.arange(-10, 11)
cv = ShuffleSplit(n_splits=5, test_size=0.5)
clf = GridSearchCV(
estimator=OneVsRestClassifier(logreg),
param_grid=dict(estimator__C=c),
n_jobs=5,
cv=cv,
verbose=0,
)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_test)
y_pred = np.argmax(y_pred, axis=1)
y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(
np.bool
)
test_acc = metrics.accuracy_score(y_test, y_pred)
accuracies.append(test_acc)
return accuracies
def fit_logistic_regression_preset_splits(
X, y, train_mask, val_mask, test_mask
):
# transform targets to one-hot vector
one_hot_encoder = OneHotEncoder(categories="auto", sparse=False)
y = one_hot_encoder.fit_transform(y.reshape(-1, 1)).astype(np.bool)
# normalize x
X = normalize(X, norm="l2")
accuracies = []
for split_id in range(train_mask.shape[1]):
# get train/val/test masks
tmp_train_mask, tmp_val_mask = (
train_mask[:, split_id],
val_mask[:, split_id],
)
# make custom cv
X_train, y_train = X[tmp_train_mask], y[tmp_train_mask]
X_val, y_val = X[tmp_val_mask], y[tmp_val_mask]
X_test, y_test = X[test_mask], y[test_mask]
# grid search with one-vs-rest classifiers
best_test_acc, best_acc = 0, 0
for c in 2.0 ** np.arange(-10, 11):
clf = OneVsRestClassifier(
LogisticRegression(solver="liblinear", C=c)
)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_val)
y_pred = np.argmax(y_pred, axis=1)
y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(
np.bool
)
val_acc = metrics.accuracy_score(y_val, y_pred)
if val_acc > best_acc:
best_acc = val_acc
y_pred = clf.predict_proba(X_test)
y_pred = np.argmax(y_pred, axis=1)
y_pred = one_hot_encoder.transform(
y_pred.reshape(-1, 1)
).astype(np.bool)
best_test_acc = metrics.accuracy_score(y_test, y_pred)
accuracies.append(best_test_acc)
return accuracies
def fit_ppi_linear(
num_classes, train_data, val_data, test_data, device, repeat=1
):
r"""
Trains a linear layer on top of the representations. This function is specific to the PPI dataset,
which has multiple labels.
"""
def train(classifier, train_data, optimizer):
classifier.train()
x, label = train_data
x, label = x.to(device), label.to(device)
for step in range(100):
# forward
optimizer.zero_grad()
pred_logits = classifier(x)
# loss and backprop
loss = criterion(pred_logits, label)
loss.backward()
optimizer.step()
def test(classifier, data):
classifier.eval()
x, label = data
label = label.cpu().numpy().squeeze()
# feed to network and classifier
with torch.no_grad():
pred_logits = classifier(x.to(device))
pred_class = (pred_logits > 0).float().cpu().numpy()
return (
metrics.f1_score(label, pred_class, average="micro")
if pred_class.sum() > 0
else 0
)
num_feats = train_data[0].size(1)
criterion = torch.nn.BCEWithLogitsLoss()
# normalization
mean, std = train_data[0].mean(0, keepdim=True), train_data[0].std(
0, unbiased=False, keepdim=True
)
train_data[0] = (train_data[0] - mean) / std
val_data[0] = (val_data[0] - mean) / std
test_data[0] = (test_data[0] - mean) / std
best_val_f1 = []
test_f1 = []
for _ in range(repeat):
tmp_best_val_f1 = 0
tmp_test_f1 = 0
for weight_decay in 2.0 ** np.arange(-10, 11, 2):
classifier = torch.nn.Linear(num_feats, num_classes).to(device)
optimizer = torch.optim.AdamW(
params=classifier.parameters(),
lr=0.01,
weight_decay=weight_decay,
)
train(classifier, train_data, optimizer)
val_f1 = test(classifier, val_data)
if val_f1 > tmp_best_val_f1:
tmp_best_val_f1 = val_f1
tmp_test_f1 = test(classifier, test_data)
best_val_f1.append(tmp_best_val_f1)
test_f1.append(tmp_test_f1)
return [best_val_f1], [test_f1]