forked from NRCan/geo-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_creation.py
569 lines (500 loc) · 31.3 KB
/
sample_creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import argparse
from datetime import datetime
import os
import numpy as np
np.random.seed(1234) # Set random seed for reproducibility
import warnings
import rasterio
import fiona
import shutil
import time
import json
from pathlib import Path
from tqdm import tqdm
from collections import Counter
from typing import List, Union
from utils.create_dataset import create_files_and_datasets
from utils.utils import get_key_def, pad, pad_diff, add_metadata_from_raster_to_sample
from utils.geoutils import vector_to_raster, clip_raster_with_gpkg
from utils.readers import read_parameters
from utils.verifications import assert_crs_match, validate_num_classes
from rasterio.mask import mask
from rasterio.windows import Window
from rasterio.plot import reshape_as_image
def validate_class_prop_dict(actual_classes_dict, config_dict):
"""
Populate dictionary containing class values found in vector data with values (thresholds) from sample/class_prop
parameter in config file
actual_classes_dict: dict
Dictionary where each key is a class found in vector data. Value is not relevant (should be 0)
config_dict:
Dictionary with class ids (keys and thresholds (values) from config file
"""
# Validation of class proportion parameters (assert types).
if not isinstance(config_dict, dict):
warnings.warn(f"Class_proportion parameter should be a dictionary. Got type {type(config_dict)}. "
f"Ignore if parameter was omitted)")
return None
for key, value in config_dict.items():
try:
assert isinstance(key, str)
int(key)
except (ValueError, AssertionError):
f"Class should be a string castable as an integer. Got {key} of type {type(key)}"
assert isinstance(value, int), f"Class value should be an integer, got {value} of type {type(value)}"
# Populate actual classes dictionary with values from config
for key, value in config_dict.items():
if int(key) in actual_classes_dict.keys():
actual_classes_dict[int(key)] = value
else:
warnings.warn(f"Class {key} not found in provided vector data.")
return actual_classes_dict.copy()
def getFeatures(gdf):
"""Function to parse features from GeoDataFrame in such a manner that rasterio wants them"""
import json
return [json.loads(gdf.to_json())['features'][0]['geometry']]
def process_raster_img(rst_pth, gpkg_pth):
with rasterio.open(rst_pth) as src:
rst_pth = clip_raster_with_gpkg(src, gpkg_pth)
# TODO: Return clipped raster handle
return rst_pth, src
def reorder_bands(a: List[str], b: List[str]):
read_band_order = []
for band in a:
if band in b:
read_band_order.insert(a.index(band) + 1, b.index(band) + 1)
# print(f'{a.index(band)},{band}, {b.index(band)}')
return read_band_order
def gen_img_samples(rst_pth, tile_size, dist_samples, *band_order):
with rasterio.open(rst_pth) as src:
for row in range(0, src.height, dist_samples):
for column in range(0, src.width, dist_samples):
window = Window.from_slices(slice(row, row + tile_size),
slice(column, column + tile_size))
if band_order:
window_array = reshape_as_image(src.read(band_order[0], window=window))
else:
window_array = reshape_as_image(src.read(window=window))
if window_array.shape[0] < tile_size or window_array.shape[1] < tile_size:
padding = pad_diff(window_array.shape[0], window_array.shape[1], tile_size, tile_size)
window_array = pad(window_array, padding, fill=np.nan)
yield window_array
def process_vector_label(rst_pth, gpkg_pth, ids):
if rst_pth is not None:
with rasterio.open(rst_pth) as src:
np_label = vector_to_raster(vector_file=gpkg_pth,
input_image=src,
out_shape=(src.height, src.width),
attribute_name='properties/Quatreclasses',
fill=0,
target_ids=ids,
merge_all=True,
)
return np_label
def gen_label_samples(np_label, dist_samples, tile_size):
h, w = np_label.shape
for row in range(0, h, dist_samples):
for column in range(0, w, dist_samples):
target = np_label[row:row + tile_size, column:column + tile_size]
target_row = target.shape[0]
target_col = target.shape[1]
if target_row < tile_size or target_col < tile_size:
padding = pad_diff(target_row, target_col, tile_size,
tile_size) # array, actual height, actual width, desired size
target = pad(target, padding, fill=-1)
indices = (row, column)
yield target, indices
def minimum_annotated_percent(target_background_percent, min_annotated_percent):
if not min_annotated_percent:
return True
elif float(target_background_percent) <= 100 - min_annotated_percent:
return True
return False
def append_to_dataset(dataset, sample):
"""
Append a new sample to a provided dataset. The dataset has to be expanded before we can add value to it.
:param dataset:
:param sample: data to append
:return: Index of the newly added sample.
"""
old_size = dataset.shape[0] # this function always appends samples on the first axis
dataset.resize(old_size + 1, axis=0)
dataset[old_size, ...] = sample
return old_size
def class_proportion(target, sample_size: int, class_min_prop: dict):
if not class_min_prop:
return True
sample_total = sample_size ** 2
for key, value in class_min_prop.items():
if key not in np.unique(target):
target_prop_classwise = 0
else:
target_prop_classwise = (round((np.bincount(target.clip(min=0).flatten())[key] / sample_total) * 100, 1))
if target_prop_classwise < value:
return False
return True
def add_to_datasets(dataset,
samples_file,
val_percent,
val_sample_file,
data,
target,
sample_metadata,
metadata_idx,
dict_classes):
""" Add sample to Hdf5 (trn, val or tst) and computes pixel classes(%). """
val = False
if dataset == 'trn':
random_val = np.random.randint(1, 100)
if random_val > val_percent:
pass
else:
val = True
samples_file = val_sample_file
append_to_dataset(samples_file["sat_img"], data)
append_to_dataset(samples_file["map_img"], target)
append_to_dataset(samples_file["sample_metadata"], repr(sample_metadata))
append_to_dataset(samples_file["meta_idx"], metadata_idx)
# adds pixel count to pixel_classes dict for each class in the image
for key, value in enumerate(np.bincount(target.clip(min=0).flatten())):
cls_keys = dict_classes.keys()
if key in cls_keys:
dict_classes[key] += value
elif key not in cls_keys and value > 0:
raise ValueError(f"A class value was written ({key}) that was not defined in the classes ({cls_keys}).")
return val
def sample_prep(src, data, target, indices, gpkg_classes, sample_size, sample_type, samples_count, samples_file,
num_classes,
val_percent,
val_sample_file,
min_annot_perc=None,
class_prop=None,
dontcare=-1
):
added_samples = 0
excl_samples = 0
pixel_classes = {key: 0 for key in gpkg_classes}
background_val = 0
pixel_classes[background_val] = 0
class_prop = validate_class_prop_dict(pixel_classes, class_prop)
pixel_classes[dontcare] = 0
image_metadata = add_metadata_from_raster_to_sample(sat_img_arr=data,
raster_handle=src,
meta_map={},
raster_info={})
# Save label's per class pixel count to image metadata
image_metadata['source_label_bincount'] = {class_num: count for class_num, count in
enumerate(np.bincount(target.clip(min=0).flatten()))
if count > 0} # TODO: add this to add_metadata_from[...] function?
if sample_type == 'trn':
idx_samples = samples_count['trn']
append_to_dataset(val_sample_file["metadata"], repr(image_metadata))
elif sample_type == 'tst':
idx_samples = samples_count['tst']
else:
raise ValueError(f"Sample type must be trn or tst. Provided type is {sample_type}")
idx_samples_v = samples_count['val']
# Adds raster metadata to the dataset. All samples created by tiling below will point to that metadata by index
metadata_idx = append_to_dataset(samples_file["metadata"], repr(image_metadata))
u, count = np.unique(target, return_counts=True)
# print('class:', u, 'count:', count)
target_background_percent = round(count[0] / np.sum(count) * 100 if 0 in u else 0, 1)
sample_metadata = {'sample_indices': indices}
val = False
if minimum_annotated_percent(target_background_percent, min_annot_perc) and \
class_proportion(target, sample_size, class_prop):
val = add_to_datasets(dataset=sample_type,
samples_file=samples_file,
val_percent=val_percent,
val_sample_file=val_sample_file,
data=data,
target=target,
sample_metadata=sample_metadata,
metadata_idx=metadata_idx,
dict_classes=pixel_classes)
if val:
idx_samples_v += 1
else:
idx_samples += 1
added_samples += 1
else:
excl_samples += 1
target_class_num = np.max(u)
if num_classes < target_class_num:
num_classes = target_class_num
sample_type_ = 'val' if val else sample_type
# assert added_samples > 0, "No sample added for current raster. Problems may occur with use of metadata"
if sample_type == 'tst':
samples_count['tst'] = idx_samples
else:
samples_count['trn'] = idx_samples
samples_count['val'] = idx_samples_v
return samples_count, num_classes, pixel_classes
def class_pixel_ratio(pixel_classes: dict, source_data: str, file_path: str):
with open(file_path, 'a+') as f:
pixel_total = sum(pixel_classes.values())
print(f'\n****{source_data}****\n', file=f)
for i in pixel_classes:
prop = round((pixel_classes[i] / pixel_total) * 100, 1) if pixel_total > 0 else 0
print(f'{source_data}_class', i, ':', prop, '%', file=f)
print(f'\n****{source_data}****\n', file=f)
def main(params):
"""
Dataset preparation (trn, val, tst).
:param params: (dict) Parameters found in the yaml config file.
"""
assert params['global']['task'] == 'segmentation', \
f"sample_creation.py isn't necessary when performing classification tasks"
num_classes = get_key_def('num_classes', params['global'], expected_type=int)
num_bands = get_key_def('number_of_bands', params['global'], expected_type=int)
debug = get_key_def('debug_mode', params['global'], False)
targ_ids = get_key_def('target_ids', params['sample'], None, expected_type=List)
# SET BASIC VARIABLES AND PATHS. CREATE OUTPUT FOLDERS.
val_percent = params['sample']['val_percent']
samples_size = params["global"]["samples_size"]
overlap = params["sample"]["overlap"]
dist_samples = round(samples_size * (1 - (overlap / 100)))
min_annot_perc = get_key_def('min_annotated_percent', params['sample']['sampling_method'], None, expected_type=int)
ignore_index = get_key_def('ignore_index', params['training'], -1)
meta_map = get_key_def('meta_map', params['global'], default={})
list_params = params['read_img']
source_pan = get_key_def('pan', list_params['source'], default=False, expected_type=bool)
source_mul = get_key_def('mul', list_params['source'], default=False, expected_type=bool)
mul_band_order = get_key_def('mulband', list_params['source'], default=[], expected_type=list)
prep_band = get_key_def('band', list_params['prep'], default=[], expected_type=list)
tst_set = get_key_def('benchmark', list_params, default=[], expected_type=list)
in_pth = get_key_def('input_file', list_params, default='data_file.json', expected_type=str)
sensor_lst = get_key_def('sensorID', list_params, default=['GeoEye1', 'QuickBird2' 'WV2', 'WV3', 'WV4'],
expected_type=list)
month_range = get_key_def('month_range', list_params, default=list(range(1, 12 + 1)), expected_type=list)
root_folder = Path(get_key_def('root_img_folder', list_params, default='', expected_type=str))
gpkg_status = 'all'
data_path = Path(params['global']['data_path'])
Path.mkdir(data_path, exist_ok=True, parents=True)
if not data_path.is_dir():
raise FileNotFoundError(f'Could not locate data path {data_path}')
# mlflow logging
experiment_name = get_key_def('mlflow_experiment_name', params['global'], default='gdl-training', expected_type=str)
samples_folder_name = (f'samples{samples_size}_overlap{overlap}_min-annot{min_annot_perc}_{num_bands}bands'
f'_{experiment_name}')
samples_folder = data_path.joinpath(samples_folder_name)
if samples_folder.is_dir():
if debug:
# Move existing data folder with a random suffix.
last_mod_time_suffix = datetime.fromtimestamp(samples_folder.stat().st_mtime).strftime('%Y%m%d-%H%M%S')
shutil.move(samples_folder, data_path.joinpath(f'{str(samples_folder)}_{last_mod_time_suffix}'))
else:
raise FileExistsError(f'Data path exists: {samples_folder}. Remove it or use a different experiment_name.')
Path.mkdir(samples_folder, exist_ok=False) # TODO: what if we want to append samples to existing hdf5?
trn_hdf5, val_hdf5, tst_hdf5 = create_files_and_datasets(samples_size=samples_size,
number_of_bands=num_bands,
meta_map=meta_map,
samples_folder=samples_folder,
params=params)
class_prop = get_key_def('class_proportion', params['sample']['sampling_method'], None, expected_type=dict)
dontcare = get_key_def("ignore_index", params["training"], -1)
number_samples = {'trn': 0, 'val': 0, 'tst': 0}
number_classes = 0
pixel_pan_counter = Counter()
pixel_mul_counter = Counter()
pixel_prep_counter = Counter()
filename = samples_folder.joinpath('class_distribution.txt')
with open(Path(in_pth), 'r') as fin:
dict_images = json.load(fin)
for i_dict in tqdm(dict_images['all_images'], desc=f'Writing samples to {samples_folder}'):
if i_dict['sensorID'] in sensor_lst and \
datetime.strptime(i_dict['date']['yyyy/mm/dd'], '%Y/%m/%d').month in month_range:
if source_pan:
if not len(i_dict['pan_img']) == 0 and i_dict['gpkg']:
if gpkg_status == 'all':
if 'corr' or 'prem' in i_dict['gpkg'].keys():
gpkg = root_folder.joinpath(list(i_dict['gpkg'].values())[0])
gpkg_classes = validate_num_classes(gpkg, num_classes,
'properties/Quatreclasses',
dontcare,
targ_ids)
for img_pan in i_dict['pan_img']:
img_pan = root_folder.joinpath(img_pan)
assert_crs_match(img_pan, gpkg)
rst_pth, r_ = process_raster_img(img_pan, gpkg)
np_label = process_vector_label(rst_pth, gpkg, targ_ids)
if np_label is not None:
if Path(gpkg).stem in tst_set:
sample_type = 'tst'
out_file = tst_hdf5
else:
sample_type = 'trn'
out_file = trn_hdf5
val_file = val_hdf5
src = r_
pan_label_gen = gen_label_samples(np_label, dist_samples, samples_size)
pan_img_gen = gen_img_samples(rst_pth, samples_size, dist_samples)
else:
continue
for pan_img, pan_label in zip(pan_img_gen, pan_label_gen):
number_samples, number_classes, class_pixels_pan = sample_prep(src, pan_img, pan_label[0],
pan_label[1], gpkg_classes,
samples_size, sample_type,
number_samples, out_file,
number_classes,
val_percent, val_file,
min_annot_perc,
class_prop=class_prop,
dontcare=dontcare)
pixel_pan_counter.update(class_pixels_pan)
if source_mul:
if not len(i_dict['mul_img']) == 0 and i_dict['gpkg']:
band_order = reorder_bands(i_dict['mul_band'], mul_band_order)
if gpkg_status == 'all':
if 'corr' or 'prem' in i_dict['gpkg'].keys():
gpkg = root_folder.joinpath(list(i_dict['gpkg'].values())[0])
gpkg_classes = validate_num_classes(gpkg, num_classes,
'properties/Quatreclasses',
dontcare,
targ_ids)
for img_mul in i_dict['mul_img']:
img_mul = root_folder.joinpath(img_mul)
assert_crs_match(img_mul, gpkg)
rst_pth, r_ = process_raster_img(img_mul, gpkg)
np_label = process_vector_label(rst_pth, gpkg, targ_ids)
if np_label is not None:
if Path(gpkg).stem in tst_set:
sample_type = 'tst'
out_file = tst_hdf5
else:
sample_type = 'trn'
out_file = trn_hdf5
val_file = val_hdf5
src = r_
mul_label_gen = gen_label_samples(np_label, dist_samples, samples_size)
mul_img_gen = gen_img_samples(rst_pth, samples_size, dist_samples, band_order)
else:
continue
for mul_img, mul_label in zip(mul_img_gen, mul_label_gen):
number_samples, number_classes, class_pixels_mul = sample_prep(src, mul_img, mul_label[0],
mul_label[1], gpkg_classes,
samples_size, sample_type,
number_samples, out_file,
number_classes,
val_percent, val_file,
min_annot_perc,
class_prop=class_prop,
dontcare=dontcare)
pixel_mul_counter.update(class_pixels_mul)
if prep_band:
bands_gen_list = []
if set(prep_band).issubset({'R', 'G', 'B', 'N'}):
for ib in prep_band:
if i_dict[f'{ib}_band'] and i_dict['gpkg']:
i_dict[f'{ib}_band'] = root_folder.joinpath(i_dict[f'{ib}_band'])
if gpkg_status == 'all':
if 'corr' or 'prem' in i_dict['gpkg'].keys():
gpkg = root_folder.joinpath(list(i_dict['gpkg'].values())[0])
gpkg_classes = validate_num_classes(gpkg, num_classes,
'properties/Quatreclasses',
dontcare,
targ_ids)
assert_crs_match(i_dict[f'{ib}_band'], gpkg)
rst_pth, r_ = process_raster_img(i_dict[f'{ib}_band'], gpkg)
np_label = process_vector_label(rst_pth, gpkg, targ_ids)
prep_img_gen = gen_img_samples(rst_pth, samples_size, dist_samples)
bands_gen_list.append(prep_img_gen)
if np_label is not None:
if Path(gpkg).stem in tst_set:
sample_type = 'tst'
out_file = tst_hdf5
else:
sample_type = 'trn'
out_file = trn_hdf5
val_file = val_hdf5
src = r_
prep_label_gen = gen_label_samples(np_label, dist_samples, samples_size)
if len(prep_band) and len(bands_gen_list) == 1:
for b1, prep_label in zip(bands_gen_list[0], prep_label_gen):
prep_img = b1
number_samples, number_classes, class_pixels_prep = sample_prep(src, prep_img,
prep_label[0],
prep_label[1],
gpkg_classes,
samples_size,
sample_type,
number_samples,
out_file,
number_classes,
val_percent, val_file,
min_annot_perc,
class_prop=class_prop,
dontcare=dontcare)
pixel_prep_counter.update(class_pixels_prep)
elif len(prep_band) and len(bands_gen_list) == 2:
for b1, b2, prep_label in zip(*bands_gen_list, prep_label_gen):
prep_img = np.dstack(np.array([b1, b2]))
number_samples, number_classes, class_pixels_prep = sample_prep(src, prep_img,
prep_label[0],
prep_label[1],
gpkg_classes,
samples_size,
sample_type,
number_samples,
out_file,
number_classes,
val_percent, val_file,
min_annot_perc,
class_prop=class_prop,
dontcare=dontcare)
pixel_prep_counter.update(class_pixels_prep)
elif len(prep_band) and len(bands_gen_list) == 3:
for b1, b2, b3, prep_label in zip(*bands_gen_list, prep_label_gen):
prep_img = np.dstack(np.array([b1, b2, b3]))
number_samples, number_classes, class_pixels_prep = sample_prep(src, prep_img,
prep_label[0],
prep_label[1],
gpkg_classes,
samples_size,
sample_type,
number_samples,
out_file,
number_classes,
val_percent, val_file,
min_annot_perc,
class_prop=class_prop,
dontcare=dontcare)
pixel_prep_counter.update(class_pixels_prep)
elif len(prep_band) and len(bands_gen_list) == 4:
for b1, b2, b3, b4, prep_label in zip(*bands_gen_list, prep_label_gen):
prep_img = np.dstack(np.array([b1, b2, b3, b4]))
number_samples, number_classes, class_pixels_prep = sample_prep(src, prep_img,
prep_label[0],
prep_label[1],
gpkg_classes,
samples_size,
sample_type,
number_samples,
out_file,
number_classes,
val_percent, val_file,
min_annot_perc,
class_prop=class_prop,
dontcare=dontcare)
pixel_prep_counter.update(class_pixels_prep)
else:
continue
else:
continue
trn_hdf5.close()
val_hdf5.close()
tst_hdf5.close()
class_pixel_ratio(pixel_pan_counter, 'pan_source', filename)
class_pixel_ratio(pixel_mul_counter, 'mul_source', filename)
class_pixel_ratio(pixel_prep_counter, 'prep_source', filename)
print("Number of samples created: ", number_samples, number_classes)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Sample preparation')
parser.add_argument('ParamFile', metavar='DIR',
help='Path to training parameters stored in yaml')
args = parser.parse_args()
params = read_parameters(args.ParamFile)
start_time = time.time()
tqdm.write(f'\n\nStarting images to samples preparation with {args.ParamFile}\n\n')
main(params)
print("Elapsed time:{}".format(time.time() - start_time))