-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
gradio_demo.py
385 lines (330 loc) · 11.3 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
StoppingCriteria,
)
import gradio as gr
import argparse
import os
from queue import Queue
from threading import Thread
import traceback
import gc
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
'--base_model',
default=None,
type=str,
required=True,
help='Base model path')
parser.add_argument('--lora_model', default=None, type=str,
help="If None, perform inference on the base model")
parser.add_argument(
'--tokenizer_path',
default=None,
type=str,
help='If None, lora model path or base model path will be used')
parser.add_argument(
'--gpus',
default="0",
type=str,
help='If None, cuda:0 will be used. Inference using multi-cards: --gpus=0,1,... ')
parser.add_argument('--share', default=True, help='Share gradio domain name')
parser.add_argument('--port', default=19324, type=int, help='Port of gradio demo')
parser.add_argument(
'--max_memory',
default=256,
type=int,
help='Maximum input prompt length, if exceeded model will receive prompt[-max_memory:]')
parser.add_argument(
'--load_in_8bit',
action='store_true',
help='Use 8 bit quantified model')
parser.add_argument(
'--only_cpu',
action='store_true',
help='Only use CPU for inference')
parser.add_argument(
'--alpha',
type=str,
default="1.0",
help="The scaling factor of NTK method, can be a float or 'auto'. ")
args = parser.parse_args()
if args.only_cpu is True:
args.gpus = ""
from patches import apply_attention_patch, apply_ntk_scaling_patch
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)
# Set CUDA devices if available
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# Peft library can only import after setting CUDA devices
from peft import PeftModel
# Set up the required components: model and tokenizer
def setup():
global tokenizer, model, device, share, port, max_memory
max_memory = args.max_memory
port = args.port
share = args.share
load_in_8bit = args.load_in_8bit
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.lora_model
if args.lora_model is None:
args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path)
base_model = LlamaForCausalLM.from_pretrained(
args.base_model,
load_in_8bit=load_in_8bit,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
)
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
assert tokenzier_vocab_size > model_vocab_size
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(
base_model,
args.lora_model,
torch_dtype=load_type,
device_map='auto',
)
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
# Reset the user input
def reset_user_input():
return gr.update(value='')
# Reset the state
def reset_state():
return []
# Generate the prompt for the input of LM model
def generate_prompt(instruction):
return f"""
Below is an instruction that describes a task. Write a response that appropriately completes the request.
{instruction}
"""
# User interaction function for chat
def user(user_message, history):
return gr.update(value="", interactive=False), history + \
[[user_message, None]]
class Stream(StoppingCriteria):
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, input_ids, scores) -> bool:
if self.callback_func is not None:
self.callback_func(input_ids[0])
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
Adapted from: https://stackoverflow.com/a/9969000
"""
def __init__(self, func, kwargs=None, callback=None):
self.mfunc = func
self.c_callback = callback
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs or {}
self.stop_now = False
def _callback(val):
if self.stop_now:
raise ValueError
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
except Exception:
traceback.print_exc()
clear_torch_cache()
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __del__(self):
clear_torch_cache()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True
clear_torch_cache()
def clear_torch_cache():
gc.collect()
if torch.cuda.device_count() > 0:
torch.cuda.empty_cache()
# Perform prediction based on the user input and history
@torch.no_grad()
def predict(
history,
max_new_tokens=128,
top_p=0.75,
temperature=0.1,
top_k=40,
do_sample=True,
repetition_penalty=1.0
):
history[-1][1] = ""
if len(history) != 0:
input = "".join(["### Instruction:\n" +
i[0] +
"\n\n" +
"### Response: " +
i[1] +
("\n\n" if i[1] != "" else "") for i in history])
if len(input) > max_memory:
input = input[-max_memory:]
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generate_params = {
'input_ids': input_ids,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'temperature': temperature,
'top_k': top_k,
'do_sample': do_sample,
'repetition_penalty': repetition_penalty,
}
def generate_with_callback(callback=None, **kwargs):
if 'stopping_criteria' in kwargs:
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
else:
kwargs['stopping_criteria'] = [Stream(callback_func=callback)]
clear_torch_cache()
with torch.no_grad():
model.generate(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs, callback=None)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
next_token_ids = output[len(input_ids[0]):]
if next_token_ids[0] == tokenizer.eos_token_id:
break
new_tokens = tokenizer.decode(
next_token_ids, skip_special_tokens=True)
if isinstance(tokenizer, LlamaTokenizer) and len(next_token_ids) > 0:
if tokenizer.convert_ids_to_tokens(int(next_token_ids[0])).startswith('▁'):
new_tokens = ' ' + new_tokens
history[-1][1] = new_tokens
yield history
if len(next_token_ids) >= max_new_tokens:
break
# Call the setup function to initialize the components
setup()
# Create the Gradio interface
with gr.Blocks() as demo:
github_banner_path = 'https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca/main/pics/banner.png'
gr.HTML(f'<p align="center"><a href="https://github.com/ymcui/Chinese-LLaMA-Alpaca"><img src={github_banner_path} width="700"/></a></p>')
gr.Markdown("> 为了促进大模型在中文NLP社区的开放研究,本项目开源了中文LLaMA模型和指令精调的Alpaca大模型。这些模型在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练,进一步提升了中文基础语义理解能力。同时,中文Alpaca模型进一步使用了中文指令数据进行精调,显著提升了模型对指令的理解和执行能力。")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False,
placeholder="Shift + Enter发送消息...",
lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_new_token = gr.Slider(
0,
4096,
value=512,
step=1.0,
label="Maximum New Token Length",
interactive=True)
top_p = gr.Slider(0, 1, value=0.9, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0,
1,
value=0.5,
step=0.01,
label="Temperature",
interactive=True)
top_k = gr.Slider(1, 40, value=40, step=1,
label="Top K", interactive=True)
do_sample = gr.Checkbox(
value=True,
label="Do Sample",
info="use random sample strategy",
interactive=True)
repetition_penalty = gr.Slider(
1.0,
3.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
interactive=True)
params = [user_input, chatbot]
predict_params = [
chatbot,
max_new_token,
top_p,
temperature,
top_k,
do_sample,
repetition_penalty]
submitBtn.click(
user,
params,
params,
queue=False).then(
predict,
predict_params,
chatbot).then(
lambda: gr.update(
interactive=True),
None,
[user_input],
queue=False)
user_input.submit(
user,
params,
params,
queue=False).then(
predict,
predict_params,
chatbot).then(
lambda: gr.update(
interactive=True),
None,
[user_input],
queue=False)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot], show_progress=True)
# Launch the Gradio interface
demo.queue().launch(
share=share,
inbrowser=True,
server_name='0.0.0.0',
server_port=port)