-
Notifications
You must be signed in to change notification settings - Fork 24
/
gnn.py
154 lines (112 loc) · 4.75 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
class Graph_conv_block(nn.Module):
def __init__(self, input_dim, output_dim, use_bn=True):
super(Graph_conv_block, self).__init__()
self.weight = nn.Linear(input_dim, output_dim)
if use_bn:
self.bn = nn.BatchNorm1d(output_dim)
else:
self.bn = None
def forward(self, x, A):
x_next = torch.matmul(A, x) # (b, N, input_dim)
x_next = self.weight(x_next) # (b, N, output_dim)
if self.bn is not None:
x_next = torch.transpose(x_next, 1, 2) # (b, output_dim, N)
x_next = x_next.contiguous()
x_next = self.bn(x_next)
x_next = torch.transpose(x_next, 1, 2) # (b, N, output)
return x_next
class Adjacency_layer(nn.Module):
def __init__(self, input_dim, hidden_dim, ratio=[2,2,1,1]):
super(Adjacency_layer, self).__init__()
module_list = []
for i in range(len(ratio)):
if i == 0:
module_list.append(nn.Conv2d(input_dim, hidden_dim*ratio[i], 1, 1))
else:
module_list.append(nn.Conv2d(hidden_dim*ratio[i-1], hidden_dim*ratio[i], 1, 1))
module_list.append(nn.BatchNorm2d(hidden_dim*ratio[i]))
module_list.append(nn.LeakyReLU())
module_list.append(nn.Conv2d(hidden_dim*ratio[-1], 1, 1, 1))
self.module_list = nn.ModuleList(module_list)
def forward(self, x):
X_i = x.unsqueeze(2) # (b, N , 1, input_dim)
X_j = torch.transpose(X_i, 1, 2) # (b, 1, N, input_dim)
phi = torch.abs(X_i - X_j) # (b, N, N, input_dim)
phi = torch.transpose(phi, 1, 3) # (b, input_dim, N, N)
A = phi
for l in self.module_list:
A = l(A)
# (b, 1, N, N)
A = torch.transpose(A, 1, 3) # (b, N, N, 1)
A = F.softmax(A, 2) # normalize
return A.squeeze(3) # (b, N, N)
class GNN_module(nn.Module):
def __init__(self, nway, input_dim, hidden_dim, num_layers, feature_type='dense'):
super(GNN_module, self).__init__()
self.feature_type = feature_type
adjacency_list = []
graph_conv_list = []
# ratio = [2, 2, 1, 1]
ratio = [2, 1]
if self.feature_type == 'dense':
for i in range(num_layers):
adjacency_list.append(Adjacency_layer(
input_dim=input_dim+hidden_dim//2*i,
hidden_dim=hidden_dim,
ratio=ratio))
graph_conv_list.append(Graph_conv_block(
input_dim=input_dim+hidden_dim//2*i,
output_dim=hidden_dim//2))
# last layer
last_adjacency = Adjacency_layer(
input_dim=input_dim+hidden_dim//2*num_layers,
hidden_dim=hidden_dim,
ratio=ratio)
last_conv = Graph_conv_block(
input_dim=input_dim+hidden_dim//2*num_layers,
output_dim=nway,
use_bn=False)
elif self.feature_type == 'forward':
for i in range(num_layers):
adjacency_list.append(Adjacency_layer(
input_dim=input_dim if i == 0 else hidden_dim,
hidden_dim=hidden_dim,
ratio=ratio))
graph_conv_list.append(Graph_conv_block(
input_dim=hidden_dim,
output_dim=hidden_dim))
# last layer
last_adjacency = Adjacency_layer(
input_dim=hidden_dim,
hidden_dim=hidden_dim,
ratio=ratio)
last_conv = Graph_conv_block(
input_dim=hidden_dim,
output_dim=nway,
use_bn=False)
else:
raise NotImplementedError
self.adjacency_list = nn.ModuleList(adjacency_list)
self.graph_conv_list = nn.ModuleList(graph_conv_list)
self.last_adjacency = last_adjacency
self.last_conv = last_conv
def forward(self, x):
for i, _ in enumerate(self.adjacency_list):
adjacency_layer = self.adjacency_list[i]
conv_block = self.graph_conv_list[i]
A = adjacency_layer(x)
x_next = conv_block(x, A)
x_next = F.leaky_relu(x_next, 0.1)
if self.feature_type == 'dense':
x = torch.cat([x, x_next], dim=2)
elif self.feature_type == 'forward':
x = x_next
else:
raise NotImplementedError
A = self.last_adjacency(x)
out = self.last_conv(x, A)
return out[:, 0, :]