forked from xinmei9322/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
show_samples_inpaint.py
57 lines (42 loc) · 1.43 KB
/
show_samples_inpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import theano
from pylearn2.utils import serial
import sys
from pylearn2.gui.patch_viewer import make_viewer
from pylearn2.space import VectorSpace
from pylearn2.config import yaml_parse
import numpy as np
import ipdb
# TODO, only works for CIFAR10 for now
grid_shape = None
repeat_samples = 1
num_samples = 5
_, model_path = sys.argv
model = serial.load(model_path)
rng = np.random.RandomState(20232)
def get_data_samples(dataset, n = num_samples):
unique_y = np.unique(dataset.y)
rval = []
for y in np.unique(dataset.y):
ind = np.where(dataset.y == y)[0]
ind = ind[rng.randint(0, len(ind), n)]
rval.append(dataset.get_topological_view()[ind])
return np.concatenate(rval)
dataset = yaml_parse.load(model.dataset_yaml_src)
dataset = dataset.get_test_set()
data = get_data_samples(dataset)
output_space = model.generator.get_output_space()
input_space = model.generator.mlp.input_space
X = input_space.get_theano_batch()
samples, _ = model.generator.inpainting_sample_and_noise(X)
f = theano.function([X], samples)
samples = []
for i in xrange(repeat_samples):
samples.append(f(data))
samples = np.concatenate(samples)
is_color = True
print (samples.min(), samples.mean(), samples.max())
# Hack for detecting MNIST [0, 1] values. Otherwise we assume centered images
if samples.min() >0:
samples = samples * 2.0 - 1.0
viewer = make_viewer(samples, grid_shape=grid_shape, is_color=is_color)
viewer.show()