forked from Zehong-Ma/ChID-CL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
idom_token_pretrained.py
577 lines (505 loc) · 23.2 KB
/
idom_token_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for ChID.
"""
import logging
import os
os.environ["WANDB_DISABLED"] = "true"
import sys
import copy
from dataclasses import dataclass, field
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
from contrastive_model import BertForChID
import torch.nn as nn
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from tokenizers import Tokenizer
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
# logging_steps: int = field(
# default=10,
# metadata={
# "help": (
# "logging steps."
# )
# },
# )
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
def __post_init__(self):
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class DataCollatorForChID:
"""
Data collator that will dynamically pad the inputs.
Candidate masks will be computed to indicate which tokens are candidates.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# Add back labels
batch["labels"] = torch.tensor(labels, dtype=torch.int64)
# Compute candidate masks
batch["candidate_mask"] = batch["input_ids"] == self.tokenizer.mask_token_id
return batch
def main():
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.train_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
# Downloading and loading the chid dataset from the hub. This code is not supposed to be executed in.
raw_datasets = load_dataset(
"YuAnthony/chid",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# https://huggingface.co/docs/transformers/v4.24.0/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.from_pretrained
# tokenizer = AutoTokenizer.from_pretrained(
# model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
# cache_dir=model_args.cache_dir,
# use_fast=model_args.use_fast_tokenizer,
# revision=model_args.model_revision,
# use_auth_token=True if model_args.use_auth_token else None,
# )
# import pdb
# pdb.set_trace()
# tokenizer.save("./data/my_tokenizer")
tokenizer = AutoTokenizer.from_pretrained("./data/my_tokenizer")
print("#############################################")
logger.warning("the total number of entire vocab is %d"%len(tokenizer.get_vocab()))
print("#############################################")
model = BertForChID.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# set new word embedding containing idiom embeddings
embedding_checkpoint = torch.load("./data/idiom_word_embedding.pt", map_location="cpu")
idiom_embeddings = embedding_checkpoint['idiom_embeddings']
model.bert.set_input_embeddings(idiom_embeddings)
# set new predictions.decoder
# old_prediction_decoder= model.cls.predictions.decoder
# new_prediction_decoder = nn.Linear(768, 52053, bias=False)
# new_prediction_decoder.bias = nn.Parameter(torch.zeros(52053))
# with torch.no_grad():
# new_prediction_decoder.weight[:21128] = old_prediction_decoder.weight
# new_prediction_decoder.bias[:21128] = old_prediction_decoder.bias
# model.cls.predictions.decoder = new_prediction_decoder
label_column_name = "labels"
idiom_tag = '#idiom#'
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
# Preprocessing the datasets.
# We only consider one idiom per instance in the dataset, a sentence containing multiple idioms will be split into multiple instances.
# The idiom tag of each instance will be replaced with 4 [MASK] tokens.
def preprocess_function_resize(examples):
return_dic = {}
return_dic_keys = ['candidates', 'content', 'labels']
for k in return_dic_keys:
return_dic[k] = []
for i in range(len(examples['content'])):
idx = -1
text = examples['content'][i]
for j in range(examples['realCount'][i]):
return_dic['candidates'].append(examples['candidates'][i][j]) # multi-choice
idx = text.find(idiom_tag, idx+1)
return_dic['content'].append(text[:idx] + tokenizer.mask_token + text[idx+len(idiom_tag):])
for k, candidate in enumerate(examples['candidates'][i][j]):
if candidate == examples['groundTruth'][i][j]:
return_dic['labels'].append(k)
break
return return_dic
# tokenize all instances
# contribution1: tokenized by meaningful words instead of single word or only replace one idiom masked by masked token.
def preprocess_function_tokenize(examples):
first_sentences = examples['content']
labels = examples[label_column_name]
# truncate the first sentences.
for i, sentence in enumerate(first_sentences):
if len(sentence) <= 500:
continue
if sentence.find(tokenizer.mask_token) > len(sentence) // 2: # max length of the sentence is 500
first_sentences[i] = sentence[-500:]
else:
first_sentences[i] = sentence[:500]
tokenized_examples = tokenizer(
first_sentences,
max_length=max_seq_length,
padding="max_length" if data_args.pad_to_max_length else False,
truncation=True,
)
tokenized_examples["labels"] = labels
# contribution2: use idiom vocabs to represent idioms instead of simply word.
# notice: tokenizer() will split the idiom into single word instead of a entire idiom.
tokenized_candidates = [[tokenizer.convert_tokens_to_ids(candidate) for candidate in candidates]for candidates in examples['candidates']] # batch_size*choices_num*4
tokenized_examples["candidates"] = tokenized_candidates
return tokenized_examples
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.shuffle(seed=42)
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function_resize,
batched=True,
remove_columns=["groundTruth", "realCount"],
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
train_dataset = train_dataset.map(
preprocess_function_tokenize,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
# for index in range(3):
# logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function_resize,
batched=True,
remove_columns=["groundTruth", "realCount"],
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
eval_dataset = eval_dataset.map(
preprocess_function_tokenize,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
test_dataset = raw_datasets["test"]
with training_args.main_process_first(desc="test dataset map pre-processing"):
test_dataset = test_dataset.map(
preprocess_function_resize,
batched=True,
remove_columns=["groundTruth", "realCount"],
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
test_dataset = test_dataset.map(
preprocess_function_tokenize,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
data_collator = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForChID(tokenizer=tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
)
# data_collator = default_data_collator
# Metric
def compute_metrics(eval_predictions):
predictions, label_ids = eval_predictions
preds = np.argmax(predictions, axis=1)
return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
print(training_args.resume_from_checkpoint)
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=test_dataset)
metrics["test_samples"] = len(test_dataset)
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
# kwargs = dict(
# finetuned_from=model_args.model_name_or_path,
# tasks="multiple-choice",
# dataset_tags="swag",
# dataset_args="regular",
# dataset="SWAG",
# language="en",
# )
# if training_args.push_to_hub:
# trainer.push_to_hub(**kwargs)
# else:
# trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()