-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain_faster_rcnn_voc_ilsvrc.m
143 lines (129 loc) · 6.04 KB
/
train_faster_rcnn_voc_ilsvrc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
function train_voc_ilsvrc(varargin)
% script_faster_rcnn_VGG16()
% Faster rcnn training and testing with VGG16 model
% --------------------------------------------------------
% Faster R-CNN
% Copyright (c) 2015, Shaoqing Ren
% Licensed under The MIT License [see LICENSE for details]
% --------------------------------------------------------
% save memory use global variables
global dataset
clear fast_rcnn_generate_random_minibatch
clc;
clear mex;
clear is_valid_handle; % to clear init_key
run('startup');
%% input parser
ip = inputParser;
ip.addParameter('caffe_version', 'caffe', @ischar);
ip.addParameter('cache_root_dir', '.', @ischar);
ip.addParameter('imdb_cache_dir', '.', @ischar);
ip.addParameter('image_data_dir', '/disks/sda/01/Yifan_sda/image_data', @ischar);
ip.addParameter('gpu_id', 0, @isscalar);
ip.addParameter('do_val', true, @islogical);
ip.addParameter('proposal1_snapshot', '', @ischar);
ip.addParameter('detection1_snapshot', '', @ischar);
ip.addParameter('proposal2_snapshot', '', @ischar);
ip.addParameter('detection2_snapshot', '', @ischar);
ip.parse(varargin{:});
opts = ip.Results;
%% -------------------- CONFIG --------------------
% model
model = [];
model = Model.VGG16_for_Faster_RCNN_VOCplusILSVRC(model);
model.stage1_rpn.snapshot = opts.proposal1_snapshot;
model.stage1_fast_rcnn.snapshot = opts.detection1_snapshot;
model.stage2_rpn.snapshot = opts.proposal2_snapshot;
model.stage2_fast_rcnn.snapshot = opts.detection2_snapshot;
% cache base
% cache_base_proposal = 'voc0712_ilsvrc_default';
cache_base_proposal = 'vgg16_voc0712_ilsvrc_default';
cache_base_fast_rcnn = '';
% train/test data
dataset = [];
use_flipped = true; %TODO
Dataset.get_dataset_VOCplusILSVRC('train', use_flipped, 'imdb_cache_dir', opts.imdb_cache_dir, ...
'dataroot', opts.image_data_dir);
if opts.do_val
Dataset.get_dataset_VOCplusILSVRC('val', false, 'imdb_cache_dir', opts.imdb_cache_dir, ...
'dataroot', opts.image_data_dir);
end
%% -------------------- TRAIN --------------------
% conf
conf_proposal = proposal_config(...
'image_means', model.mean_image, ...
'feat_stride', model.feat_stride,...
'cache_root_dir' , opts.cache_root_dir);
a = datevec(now);
conf_fast_rcnn = fast_rcnn_config(...
'image_means', model.mean_image, ...
'use_flipped', use_flipped, ...
'cache_root_dir' , opts.cache_root_dir,...
'rng_seed', a(6));
clear a;
rpn_conf_min_size();
% set cache folder for each stage
model = Faster_RCNN_Train.set_cache_folder(cache_base_proposal, cache_base_fast_rcnn, model);
% caffe environment
caffe_mex(opts.gpu_id, opts.caffe_version);
% generate anchors and pre-calculate output size of rpn network
[conf_proposal.anchors, conf_proposal.output_width_map, conf_proposal.output_height_map] ...
= proposal_prepare_anchors(conf_proposal, model.stage1_rpn.cache_name, model.stage1_rpn.test_net_def_file);
%% stage one proposal
fprintf('\n***************\nstage one proposal \n***************\n');
% train
model.stage1_rpn = Faster_RCNN_Train.do_proposal_train(conf_proposal, model.stage1_rpn, opts.do_val);
% test
Faster_RCNN_Train.do_proposal_test(conf_proposal, model.stage1_rpn, 'train');
if opts.do_val
Faster_RCNN_Train.do_proposal_test(conf_proposal, model.stage1_rpn, 'test');
end
%% stage one fast rcnn
fprintf('\n***************\nstage one fast rcnn\n***************\n');
% train
model.stage1_fast_rcnn = Faster_RCNN_Train.do_fast_rcnn_train(conf_fast_rcnn, model.stage1_fast_rcnn, opts.do_val);
% test
% opts.mAP = Faster_RCNN_Train.do_fast_rcnn_test(conf_fast_rcnn, model.stage1_fast_rcnn, dataset.imdb_test, dataset.roidb_test);
%% stage two proposal
% net proposal
fprintf('\n***************\nstage two proposal\n***************\n');
% reload dataset to clear memory
if conf_proposal.target_only_gt
rm_roidb_from_proposal()
end
% train
model.stage2_rpn.init_net_file = model.stage1_fast_rcnn.output_model_file;
model.stage2_rpn = Faster_RCNN_Train.do_proposal_train(conf_proposal, model.stage2_rpn, opts.do_val);
% test
Faster_RCNN_Train.do_proposal_test(conf_proposal, model.stage2_rpn, 'train');
if opts.do_val
Faster_RCNN_Train.do_proposal_test(conf_proposal, model.stage2_rpn, 'test');
end
%% stage two fast rcnn
fprintf('\n***************\nstage two fast rcnn\n***************\n');
% train
model.stage2_fast_rcnn.init_net_file = model.stage1_fast_rcnn.output_model_file;
model.stage2_fast_rcnn = Faster_RCNN_Train.do_fast_rcnn_train(conf_fast_rcnn, model.stage2_fast_rcnn, opts.do_val);
%% final test
fprintf('\n***************\nfinal test\n***************\n');
model.stage2_rpn.nms = model.final_test.nms;
Faster_RCNN_Train.do_proposal_test(conf_proposal, model.stage2_rpn, 'test');
% opts.final_mAP = Faster_RCNN_Train.do_fast_rcnn_test(conf_fast_rcnn, model.stage2_fast_rcnn, dataset.imdb_test, dataset.roidb_test);
% save final models, for outside tester
Faster_RCNN_Train.gather_rpn_fast_rcnn_models(conf_proposal, conf_fast_rcnn, model, dataset);
%% rpn_conf_min_size: function description
function rpn_conf_min_size()
min_size_train = min(cellfun(@(x) min(x.sizes(:)), dataset.imdb_train, 'UniformOutput', true));
min_size_test = [];
if isfield('imdb_test', dataset)
min_size_test = min(cellfun(@(x) min(x.sizes(:)), dataset.imdb_test, 'UniformOutput', true));
end
conf_proposal.min_size = min([min_size_test(:); min_size_train(:)]);
end
end
function [anchors, output_width_map, output_height_map] = proposal_prepare_anchors(conf, cache_name, test_net_def_file)
[output_width_map, output_height_map] ...
= proposal_calc_output_size(conf, test_net_def_file);
anchors = proposal_generate_anchors(cache_name, ...
'scales', 2.^[3:5]);
end