-
Notifications
You must be signed in to change notification settings - Fork 46
/
slab.c
executable file
·489 lines (403 loc) · 14.9 KB
/
slab.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/* ref: https://github.com/bbu/userland-slab-allocator */
#include "slab.h"
#include "taihen_internal.h"
#include <psp2kern/kernel/sysmem.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#define assert(x) // turn off asserts
#define SLAB_DUMP_COLOURED
#ifdef SLAB_DUMP_COLOURED
# define GRAY(s) "\033[1;30m" s "\033[0m"
# define RED(s) "\033[0;31m" s "\033[0m"
# define GREEN(s) "\033[0;32m" s "\033[0m"
# define YELLOW(s) "\033[1;33m" s "\033[0m"
#else
# define GRAY(s) s
# define RED(s) s
# define GREEN(s) s
# define YELLOW(s) s
#endif
#define SLOTS_ALL_ZERO ((uint64_t) 0)
#define SLOTS_FIRST ((uint64_t) 1)
#define FIRST_FREE_SLOT(s) ((size_t) __builtin_ctzll(s))
#define FREE_SLOTS(s) ((size_t) __builtin_popcountll(s))
#define ONE_USED_SLOT(slots, empty_slotmask) \
( \
( \
(~(slots) & (empty_slotmask)) & \
((~(slots) & (empty_slotmask)) - 1) \
) == SLOTS_ALL_ZERO \
)
#define POWEROF2(x) ((x) != 0 && ((x) & ((x) - 1)) == 0)
#define LIKELY(exp) __builtin_expect(exp, 1)
#define UNLIKELY(exp) __builtin_expect(exp, 0)
const size_t slab_pagesize = 0x1000;
/**
* @brief Allocates a raw chunk of memory
*
* Returns a pointer that's kernel writable and another one that's executable.
*
* @param[in] pid PID to allocate memory for
* @param ptr A kernel writable pointer
* @param exe_addr Executable in the address spaces of PID process
* @param exe_res UID for the executable mapping
* @param[in] align Alignment
* @param[in] size Size
*
* @return UID of writable memory on success, < 0 on error
*/
static SceUID sce_exe_alloc(SceUID pid, void **ptr, uintptr_t *exe_addr, SceUID *exe_res, size_t align, size_t size) {
SceKernelAllocMemBlockKernelOpt opt;
SceKernelMemBlockType type;
SceUID res, blkid;
LOG("Allocating exec slab for %x size 0x%08X", pid, size);
// allocate exe mem
memset(&opt, 0, sizeof(opt));
opt.size = sizeof(opt);
opt.attr = 0xA0000000 | 0x400000;
opt.alignment = align;
if (align) {
opt.attr |= SCE_KERNEL_ALLOC_MEMBLOCK_ATTR_HAS_ALIGNMENT;
}
if (pid == KERNEL_PID) {
type = SCE_KERNEL_MEMBLOCK_TYPE_KERNEL_RX;
} else if (pid == SHARED_PID) {
type = SCE_KERNEL_MEMBLOCK_TYPE_SHARED_RX;
} else {
type = SCE_KERNEL_MEMBLOCK_TYPE_USER_RX;
opt.attr |= 0x80080;
opt.pid = pid;
}
*exe_res = ksceKernelAllocMemBlock("taislab", type, size, &opt);
LOG("ksceKernelAllocMemBlock(taislab): 0x%08X", *exe_res);
if (*exe_res < 0) {
return *exe_res;
}
res = ksceKernelGetMemBlockBase(*exe_res, (void **)exe_addr);
LOG("ksceKernelGetMemBlockBase(%x): 0x%08X, addr: 0x%08X", *exe_res, res, *exe_addr);
if (res < 0) {
goto err2;
}
// TODO: Perhaps move this to execmem seal?
if (pid != KERNEL_PID) {
res = ksceKernelMapBlockUserVisible(*exe_res);
LOG("ksceKernelMapBlockUserVisible: %x", res);
if (res < 0) {
goto err2;
}
}
// map in every process if needed
if (pid == SHARED_PID) {
// FIXME: implement this
}
// allocate mirror
memset(&opt, 0, sizeof(opt));
opt.size = sizeof(opt);
opt.attr = 0x1000040;
opt.mirror_blockid = *exe_res;
res = ksceKernelAllocMemBlock("taimirror", SCE_KERNEL_MEMBLOCK_TYPE_RW_UNK0, 0, &opt);
LOG("ksceKernelAllocMemBlock(taimirror): 0x%08X", res);
if (res < 0) {
goto err2;
}
blkid = res;
res = ksceKernelGetMemBlockBase(blkid, ptr);
LOG("ksceKernelGetMemBlockBase(%x): 0x%08X, addr: 0x%08X", blkid, res, *ptr);
if (res < 0) {
goto err1;
}
return blkid;
err1:
ksceKernelFreeMemBlock(blkid);
err2:
ksceKernelFreeMemBlock(*exe_res);
return res;
}
/**
* @brief Free chunk of memory
*
* @param[in] write_res The writable UID
* @param[in] exe_res The executable UID
*
* @return Zero
*/
static int sce_exe_free(SceUID write_res, SceUID exe_res) {
LOG("freeing slab %x, mirror %x", exe_res, write_res);
ksceKernelFreeMemBlock(write_res);
ksceKernelFreeMemBlock(exe_res);
return 0;
}
/**
* @brief Compute the next largest power of two. Limit 32 bits.
*
* @param[in] v Input number
*
* @return Next power of 2.
*/
static inline uint32_t next_pow_2(uint32_t v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
v += (v == 0);
return v;
}
void slab_init(struct slab_chain *const sch, const size_t itemsize, SceUID pid)
{
assert(sch != NULL);
assert(itemsize >= 1 && itemsize <= SIZE_MAX);
assert(POWEROF2(slab_pagesize));
sch->itemsize = itemsize;
sch->pid = pid;
const size_t data_offset = offsetof(struct slab_header, data);
const size_t least_slabsize = data_offset + 64 * sch->itemsize;
sch->slabsize = (size_t) next_pow_2(least_slabsize);
sch->itemcount = 64;
if (sch->slabsize - least_slabsize != 0) {
const size_t shrinked_slabsize = sch->slabsize >> 1;
if (data_offset < shrinked_slabsize &&
shrinked_slabsize - data_offset >= 2 * sch->itemsize) {
sch->slabsize = shrinked_slabsize;
sch->itemcount = (shrinked_slabsize - data_offset) / sch->itemsize;
}
}
sch->pages_per_alloc = sch->slabsize > slab_pagesize ?
sch->slabsize : slab_pagesize;
sch->empty_slotmask = ~SLOTS_ALL_ZERO >> (64 - sch->itemcount);
sch->initial_slotmask = sch->empty_slotmask ^ SLOTS_FIRST;
sch->alignment_mask = ~(sch->slabsize - 1);
sch->partial = sch->empty = sch->full = NULL;
assert(slab_is_valid(sch));
}
void *slab_alloc(struct slab_chain *const sch, uintptr_t *exe_addr)
{
assert(sch != NULL);
assert(slab_is_valid(sch));
if (LIKELY(sch->partial != NULL)) {
/* found a partial slab, locate the first free slot */
register const size_t slot = FIRST_FREE_SLOT(sch->partial->slots);
sch->partial->slots ^= SLOTS_FIRST << slot;
if (UNLIKELY(sch->partial->slots == SLOTS_ALL_ZERO)) {
/* slab has become full, change state from partial to full */
struct slab_header *const tmp = sch->partial;
/* skip first slab from partial list */
if (LIKELY((sch->partial = sch->partial->next) != NULL))
sch->partial->prev = NULL;
if (LIKELY((tmp->next = sch->full) != NULL))
sch->full->prev = tmp;
sch->full = tmp;
*exe_addr = sch->full->exe_data + slot * sch->itemsize;
return sch->full->data + slot * sch->itemsize;
} else {
*exe_addr = sch->partial->exe_data + slot * sch->itemsize;
return sch->partial->data + slot * sch->itemsize;
}
} else if (LIKELY((sch->partial = sch->empty) != NULL)) {
/* found an empty slab, change state from empty to partial */
if (LIKELY((sch->empty = sch->empty->next) != NULL))
sch->empty->prev = NULL;
sch->partial->next = NULL;
/* slab is located either at the beginning of page, or beyond */
UNLIKELY(sch->partial->refcount != 0) ?
sch->partial->refcount++ : sch->partial->page->refcount++;
sch->partial->slots = sch->initial_slotmask;
*exe_addr = sch->partial->exe_data;
return sch->partial->data;
} else {
/* no empty or partial slabs available, create a new one */
SceUID write_res, exe_res;
uintptr_t exe_data;
if ((write_res = sce_exe_alloc(sch->pid, (void **)&sch->partial, &exe_data,
&exe_res, sch->slabsize, sch->pages_per_alloc)) < 0) {
*exe_addr = 0;
return sch->partial = NULL;
}
sch->partial->write_res = write_res;
sch->partial->exe_res = exe_res;
sch->partial->exe_data = exe_data + offsetof(struct slab_header, data);
exe_data += sch->slabsize;
struct slab_header *prev = NULL;
const char *const page_end =
(char *) sch->partial + sch->pages_per_alloc;
union {
const char *c;
struct slab_header *const s;
} curr = {
.c = (const char *) sch->partial + sch->slabsize
};
__builtin_prefetch(sch->partial, 1);
sch->partial->prev = sch->partial->next = NULL;
sch->partial->refcount = 1;
sch->partial->slots = sch->initial_slotmask;
if (LIKELY(curr.c != page_end)) {
curr.s->prev = NULL;
curr.s->refcount = 0;
curr.s->page = sch->partial;
curr.s->write_res = write_res;
curr.s->exe_res = exe_res;
curr.s->exe_data = exe_data;
exe_data += sch->slabsize;
curr.s->slots = sch->empty_slotmask;
sch->empty = prev = curr.s;
while (LIKELY((curr.c += sch->slabsize) != page_end)) {
prev->next = curr.s;
curr.s->prev = prev;
curr.s->refcount = 0;
curr.s->page = sch->partial;
curr.s->write_res = write_res;
curr.s->exe_res = exe_res;
curr.s->exe_data = exe_data;
exe_data += sch->slabsize;
curr.s->slots = sch->empty_slotmask;
prev = curr.s;
}
prev->next = NULL;
}
*exe_addr = sch->partial->exe_data;
return sch->partial->data;
}
/* unreachable */
}
void slab_free(struct slab_chain *const sch, const void *const addr)
{
assert(sch != NULL);
assert(slab_is_valid(sch));
assert(addr != NULL);
struct slab_header *const slab = (void *)
((uintptr_t) addr & sch->alignment_mask);
register const int slot = ((char *) addr - (char *) slab -
offsetof(struct slab_header, data)) / sch->itemsize;
if (UNLIKELY(slab->slots == SLOTS_ALL_ZERO)) {
/* target slab is full, change state to partial */
slab->slots = SLOTS_FIRST << slot;
if (LIKELY(slab != sch->full)) {
if (LIKELY((slab->prev->next = slab->next) != NULL))
slab->next->prev = slab->prev;
slab->prev = NULL;
} else if (LIKELY((sch->full = sch->full->next) != NULL)) {
sch->full->prev = NULL;
}
slab->next = sch->partial;
if (LIKELY(sch->partial != NULL))
sch->partial->prev = slab;
sch->partial = slab;
} else if (UNLIKELY(ONE_USED_SLOT(slab->slots, sch->empty_slotmask))) {
/* target slab is partial and has only one filled slot */
if (UNLIKELY(slab->refcount == 1 || (slab->refcount == 0 &&
slab->page->refcount == 1))) {
/* unmap the whole page if this slab is the only partial one */
if (LIKELY(slab != sch->partial)) {
if (LIKELY((slab->prev->next = slab->next) != NULL))
slab->next->prev = slab->prev;
} else if (LIKELY((sch->partial = sch->partial->next) != NULL)) {
sch->partial->prev = NULL;
}
void *const page = UNLIKELY(slab->refcount != 0) ? slab : slab->page;
const char *const page_end = (char *) page + sch->pages_per_alloc;
char found_head = 0;
union {
const char *c;
const struct slab_header *const s;
} s;
for (s.c = page; s.c != page_end; s.c += sch->slabsize) {
if (UNLIKELY(s.s == sch->empty))
found_head = 1;
else if (UNLIKELY(s.s == slab))
continue;
else if (LIKELY((s.s->prev->next = s.s->next) != NULL))
s.s->next->prev = s.s->prev;
}
if (UNLIKELY(found_head && (sch->empty = sch->empty->next) != NULL))
sch->empty->prev = NULL;
sce_exe_free(slab->write_res, slab->exe_res);
} else {
slab->slots = sch->empty_slotmask;
if (LIKELY(slab != sch->partial)) {
if (LIKELY((slab->prev->next = slab->next) != NULL))
slab->next->prev = slab->prev;
slab->prev = NULL;
} else if (LIKELY((sch->partial = sch->partial->next) != NULL)) {
sch->partial->prev = NULL;
}
slab->next = sch->empty;
if (LIKELY(sch->empty != NULL))
sch->empty->prev = slab;
sch->empty = slab;
UNLIKELY(slab->refcount != 0) ?
slab->refcount-- : slab->page->refcount--;
}
} else {
/* target slab is partial, no need to change state */
slab->slots |= SLOTS_FIRST << slot;
}
}
uintptr_t slab_getmirror(struct slab_chain *const sch, const void *const addr)
{
assert(sch != NULL);
assert(slab_is_valid(sch));
assert(addr != NULL);
struct slab_header *const slab = (void *)
((uintptr_t) addr & sch->alignment_mask);
return slab->exe_data - offsetof(struct slab_header, data) + (ptrdiff_t)((char *) addr - (char *) slab);
}
void slab_traverse(const struct slab_chain *const sch, void (*fn)(const void *))
{
assert(sch != NULL);
assert(fn != NULL);
assert(slab_is_valid(sch));
const struct slab_header *slab;
const char *item, *end;
const size_t data_offset = offsetof(struct slab_header, data);
for (slab = sch->partial; slab; slab = slab->next) {
item = (const char *) slab + data_offset;
end = item + sch->itemcount * sch->itemsize;
uint64_t mask = SLOTS_FIRST;
do {
if (!(slab->slots & mask))
fn(item);
mask <<= 1;
} while ((item += sch->itemsize) != end);
}
for (slab = sch->full; slab; slab = slab->next) {
item = (const char *) slab + data_offset;
end = item + sch->itemcount * sch->itemsize;
do fn(item);
while ((item += sch->itemsize) != end);
}
}
void slab_destroy(const struct slab_chain *const sch)
{
assert(sch != NULL);
assert(slab_is_valid(sch));
struct slab_header *const heads[] = {sch->partial, sch->empty, sch->full};
struct slab_header *pages_head = NULL, *pages_tail;
for (size_t i = 0; i < 3; ++i) {
struct slab_header *slab = heads[i];
while (slab != NULL) {
if (slab->refcount != 0) {
struct slab_header *const page = slab;
slab = slab->next;
if (UNLIKELY(pages_head == NULL))
pages_head = page;
else
pages_tail->next = page;
pages_tail = page;
} else {
slab = slab->next;
}
}
}
if (LIKELY(pages_head != NULL)) {
pages_tail->next = NULL;
struct slab_header *page = pages_head;
do {
struct slab_header *target = page;
page = page->next;
sce_exe_free(target->write_res, target->exe_res);
} while (page != NULL);
}
}