-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
198 lines (152 loc) · 5.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# coding: utf-8
import os
os.environ[ " CUDA_VISIBLE_DEVICES " ] = " 0 "
import cv2
print(cv2.__version__)
from keras.utils import to_categorical
from keras import backend as K
K.tensorflow_backend._get_available_gpus()
#GPU
import keras
import time
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
import os
import numpy as np
import cv2
start = time.time()
model = Sequential()
def loadImages():
imageList=[]
labelList=[]
rootdir= r'./star/JIAYAN_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(0)#類別0
rootdir= r'./star/JICIN_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(1)#類別1
rootdir= r'./star/KEFANG_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(2)#類別2
rootdir= r'./star/LUNMEI_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(3)#類別3
rootdir= r'./star/MEIFANG_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(4)#類別4
rootdir= r'./star/SHUYAO_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(5)#類別5
rootdir= r'./star/SUYUN_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(6)#類別6
rootdir= r'./star/XIANGHAN_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(7)#類別7
rootdir= r'./star/YUFANG_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(8)#類別8
rootdir= r'./star/ZHENLING_face/'
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (448, 448))#resize到網絡input的shape
imageList.append(f)
labelList.append(9)#類別9
return np.asarray(imageList), to_categorical(labelList, 10)
def Net_model(nb_classes, lr=0.001,decay=1e-6,momentum=0.9):
model.add(Convolution2D(filters=10, kernel_size=(5,5),
padding='valid',
input_shape=(448, 448, 3))) #卷積層
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2))) #池化層
model.add(Convolution2D(filters=20, kernel_size=(10,10)))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten()) #平坦層
model.add(Dense(1000))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
sgd = SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
return model
nb_classes = 10
nb_epoch = 30
nb_step = 6
batch_size = 64
x,y = loadImages()
from keras.preprocessing.image import ImageDataGenerator
dataGenerator = ImageDataGenerator()
dataGenerator.fit(x)
data_generator = dataGenerator.flow(x, y, batch_size, True) #generator函數,用來生成批處理數據
model = Net_model(nb_classes=nb_classes, lr=0.0001) #加載網絡模型
history = model.fit_generator(data_generator, epochs=nb_epoch, steps_per_epoch = nb_step, shuffle = True) #訓練網絡
model.save_weights('./star_trained_model_weights.h5') #將圖片處理成h5格式
print("DONE, model saved in path")
end = time.time()
print(end-start)
# In[ ]:
import matplotlib.pyplot as plt
plt.plot(history.history['loss'])
plt.show()