-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_backbone_heatmap.py
245 lines (175 loc) · 8.59 KB
/
train_backbone_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import numpy as np
from model.model import focus_net
from dataset.focusnet_dataset import BrainDataset
from torch.utils import data
from losses import FocalLoss, DiceLoss
from focusnet_validation import evaluation
from utils import *
from optparse import OptionParser
import SimpleITK as sitk
from torch.utils.tensorboard import SummaryWriter
import time
import os
import pdb
def train_net(net, options):
data_path = options.data_path + '240dataset/'
csv_file = options.data_path + 'new_train.csv'
origin_spacing_data_path = options.data_path + 'origin_spacing_croped/'
# z_size is the random crop size along z-axis, you can set it larger if have enough gpu memory
trainset = BrainDataset(csv_file, data_path, data_path, mode='train', z_size=40, sigma=5, heatmap_on=True, focus_on_small=False)
trainLoader = data.DataLoader(trainset, batch_size=options.batch_size, shuffle=True, num_workers=0)
test_data_list, test_label_list, test_center_list = load_test_data(origin_spacing_data_path)
writer = SummaryWriter(options.log_path + options.unique_name)
main_params = []
SOL_params = []
for child, module in net.named_children():
if child == 'SOL':
SOL_params += list(module.parameters())
else:
main_params += list(module.parameters())
optimizer = optim.SGD(main_params, lr=options.lr, momentum=0.9, weight_decay=0.0005)
optimizer_SOL = optim.Adam(SOL_params, lr=0.0004, weight_decay=0)
#optimizer_SOL = optim.RMSprop(SOL_params, lr=0.005)
org_weight = torch.FloatTensor(options.org_weight).unsqueeze(1).cuda()
criterion_fl = FocalLoss(10, alpha=org_weight)
criterion_dl = DiceLoss()
criterion_mse = nn.MSELoss()
SOL_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer_SOL, milestones=[200, 400], gamma=0.25)
best_dice = 0
for epoch in range(options.epochs):
print('Starting epoch {}/{}'.format(epoch+1, options.epochs))
epoch_loss = 0
epoch_heatloss = 0
multistep_scheduler = multistep_lr_scheduler_with_warmup(optimizer, init_lr=options.lr, epoch=epoch, warmup_epoch=5, lr_decay_epoch=[200, 400], max_epoch=options.epochs, gamma=0.1)
print('current lr:', multistep_scheduler)
net.train()
for i, (img, label, weight, heatmap) in enumerate(trainLoader, 0):
img = img.cuda()
label = label.cuda()
weight = weight.cuda()
heatmap = heatmap.cuda()
end = time.time()
optimizer.zero_grad()
optimizer_SOL.zero_grad()
result = net(img)
if options.rlt > 0:
loss = criterion_fl(result['main_result'], label, weight) + options.rlt * criterion_dl(result['main_result'], label, weight)
else:
loss = criterion_dl(result['main_result'], label, weight)
loss_heatmap = criterion_mse(result['heatmap'], heatmap)
loss_total = loss + 2*loss_heatmap
loss_total.backward()
optimizer.step()
optimizer_SOL.step()
epoch_loss += loss.item()
epoch_heatloss += loss_heatmap.item()
batch_time = time.time() - end
print('batch loss: %.5f, batch_time:%.5f'%(loss.item(), batch_time))
print('[epoch %d] epoch loss: %.5f'%(epoch+1, epoch_loss/(i+1)))
writer.add_scalar('Train/Loss', epoch_loss/(i+1), epoch+1)
writer.add_scalar('Train/Heat_loss', epoch_heatloss/(i+1), epoch+1)
writer.add_scalar('LR', multistep_scheduler, epoch+1)
SOL_scheduler.step()
if os.path.isdir('%s%s/'%(options.cp_path, options.unique_name)):
pass
else:
os.mkdir('%s%s/'%(options.cp_path, options.unique_name))
if (epoch+1)%10==0:
torch.save(net.state_dict(), '%s%s/CP%d.pth'%(options.cp_path, options.unique_name, epoch))
dice_list, distance_list = validation(net, test_data_list, test_label_list, test_center_list)
avg_dice = dice_list.mean()
writer.add_scalar('Test/AVG_Dice', avg_dice, epoch+1)
for idx in range(9):
writer.add_scalar('Test/Dice%d'%(idx+1), dice_list[idx], epoch+1)
writer.add_scalar('Test_distance/AVG_dis', distance_list.mean(), epoch+1)
for idx in range(3):
writer.add_scalar('Test_distance/dis%d'%(idx+1), distance_list[idx], epoch+1)
if avg_dice >= best_dice:
best_dice = avg_dice
torch.save(net.state_dict(), '%s%s/best.pth'%(options.cp_path, options.unique_name))
print('save done')
print('dice: %.5f/best dice: %.5f'%(avg_dice, best_dice))
def load_test_data(data_path):
test_name_list = ['0522c0555', '0522c0576', '0522c0598', '0522c0659', '0522c0661',
'0522c0667', '0522c0669', '0522c0708', '0522c0727', '0522c0746']
#'0522c0788', '0522c0806', '0522c0845', '0522c0857', '0522c0878']
#test_name_list = ['0522c0857']
test_data_list = []
test_label_list = []
test_center_list = []
for name in test_name_list:
CT = sitk.ReadImage(data_path + name + '_data.nii.gz')
label = sitk.ReadImage(data_path + name + '_label.nii.gz')
center = find_center(label)
test_data_list.append(CT)
test_label_list.append(label)
test_center_list.append(center)
return test_data_list, test_label_list, test_center_list
def validation(net, test_data_list, test_label_list, test_center_list):
dicecomputer = sitk.LabelOverlapMeasuresImageFilter()
total_dice = 0
dice_list = np.zeros(9)
distance_list = np.zeros(3)
small_index = [2, 4, 5]
for i in range(len(test_data_list)):
tmp_dice_list = np.zeros(9)
itkCT = test_data_list[i]
gt_center = test_center_list[i]
itkLabel = test_label_list[i]
itkPred, itksmallPred, pred_center = evaluation(net, itkCT, SMALL=False)
tmp_distance_list = cal_distance(pred_center, gt_center, itkCT)
for idx in range(1, 10):
dicecomputer.Execute(itkLabel==idx, itkPred==idx)
dice = dicecomputer.GetDiceCoefficient()
tmp_dice_list[idx-1] += dice
print('dice', tmp_dice_list.mean(), 'distance', tmp_distance_list.mean())
dice_list += tmp_dice_list
distance_list += tmp_distance_list
dice_list /= len(test_data_list)
distance_list /= len(test_data_list)
return dice_list, distance_list
if __name__ == '__main__':
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=600, type='int',
help='number of epochs')
parser.add_option('-b', '--batch_size', dest='batch_size', default=1,
type='int', help='batch size')
parser.add_option('-l', '--learning-rate', dest='lr', default=0.1,
type='float', help='learning rate')
parser.add_option('-c', '--resume', type='str', dest='load', default=False,
help='load pretrained model')
parser.add_option('-p', '--checkpoint-path', type='str', dest='cp_path',
default='./checkpoint/', help='checkpoint path')
parser.add_option('-o', '--log-path', type='str', dest='log_path',
default='./log/', help='log path')
parser.add_option('--data_path', type='str', dest='data_path',
default='/research/cbim/vast/yg397/OAR/dataset/MICCAI2015_dataset/', help='data_path')
parser.add_option('-m', type='str', dest='model',
default='focus_net', help='use which model')
parser.add_option('-u', '--unique_name', type='str', dest='unique_name',
default='test', help='use which model')
parser.add_option('--rlt', type='float', dest='rlt',
default=0.2, help='relation between CE/FL and dice')
parser.add_option('--weight', type='float', dest='org_weight',
default=[0.5,1,8,1,8,8,1,1,2,2], help='weight of focal loss')
parser.add_option('--norm', type='str', dest='norm',
default='bn')
parser.add_option('--gpu', type='str', dest='gpu',
default='0')
(options, args) = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = options.gpu
print('use model:', options.model)
if options.model == 'focus_net':
net = focus_net(1, 10, se=True, norm=options.norm, SOSNet=False)
else:
print('wrong model')
if options.load:
net.load_state_dict(torch.load(options.load))
print('Model loaded from {}'.format(options.load))
net.cuda()
train_net(net, options)
print('done')