-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathadv_train.py
346 lines (225 loc) · 11.8 KB
/
adv_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import numpy as np
from model.model import focus_net
from model.AE3D import ConvAE
from dataset.focusnet_dataset import BrainDataset
from torch.utils import data
from losses import FocalLoss, DiceLoss, BinaryDiceLoss, BinaryFocalLoss
from focusnet_validation import evaluation
from utils import *
from optparse import OptionParser
import SimpleITK as sitk
#from torch.utils.tensorboard import SummaryWriter
from tensorboardX import SummaryWriter
import time
import math
import os
import pdb
AE_ON = True
def train_net(net, AENet, options):
data_path = options.data_path + '240dataset/'
csv_file = options.data_path + 'new_train.csv'
origin_spacing_data_path = options.data_path + 'origin_spacing_croped/'
trainset = BrainDataset(csv_file, data_path, data_path, mode='train', heatmap_on=False, focus_on_small=True)
trainLoader = data.DataLoader(trainset, batch_size=options.batch_size, shuffle=True, num_workers=0)
test_data_list, test_label_list, test_center_list = load_test_data(origin_spacing_data_path)
writer = SummaryWriter(options.log_path + options.unique_name)
small_params = []
for child, module in net.named_children():
if child == 'SOS':
small_params += list(module.parameters())
else:
for param in list(module.parameters()):
param.requires_grad = False
for param in small_params:
param.requires_grad = True
#_, small_dice_list, _ = validation(net, test_data_list, test_label_list, test_center_list)
#print(small_dice_list)
optimizer_G = optim.Adam(small_params, lr=2e-4, weight_decay=0.0001)
optimizer_D = optim.Adam(AENet.parameters(), lr=2e-4, weight_decay=0.0001)
criterion_bdl = BinaryDiceLoss().cuda()
criterion_bfl = BinaryFocalLoss(alpha=0.5).cuda()
best_dice = 0
for epoch in range(options.epochs):
print('Starting epoch {}/{}'.format(epoch+1, options.epochs))
g_epoch_loss = 0
d_epoch_loss = 0
epoch_seg_loss = 0
epoch_AE_loss = 0
epoch_cls_loss = 0
epoch_recon_loss = 0
epoch_dis_loss = 0
for i, (img, label, weight) in enumerate(trainLoader, 0):
img = img.cuda().float()
label = label.cuda().float()
end = time.time()
net.train()
result = net(img, label=label)
num = result['small_result'].shape[1]
valid = torch.randn((num, 1), requires_grad=False).fill_(1.0).cuda()
fake = torch.randn((num, 1), requires_grad=False).fill_(0.0).cuda()
pred_small = result['small_result'].permute(1,0,2,3,4)
true_small = result['small_label'].permute(1,0,2,3,4)
# --------------------------------------
# Train discriminator
# --------------------------------------
recon_pred, code_pred, prob_pred, feat_pred = AENet(F.sigmoid(pred_small.detach()))
recon_true, code_true, prob_true, feat_true = AENet(true_small)
optimizer_D.zero_grad()
loss_recon , loss_dis = calc_discriminator_loss(pred_small.detach(), recon_pred, code_pred, prob_pred, feat_pred, true_small, recon_true, code_true, prob_true, feat_true, valid, fake)
print('D', loss_recon.item(), loss_dis.item())
loss_d = loss_recon + loss_dis
loss_d.backward()
d_epoch_loss += loss_d.item()
epoch_recon_loss += loss_recon.item()
epoch_dis_loss += loss_dis.item()
optimizer_D.step()
# ----------------------------------------
# Train generator
# ----------------------------------------
recon_pred, code_pred, prob_pred, feat_pred = AENet(F.sigmoid(pred_small))
recon_true, code_true, prob_true, feat_true = AENet(true_small)
loss_seg, loss_AE, loss_cls = calc_seg_loss(pred_small, recon_pred, code_pred, prob_pred, feat_pred, true_small, recon_true, code_true, prob_true, feat_true, criterion_bfl, criterion_bdl, valid)
print('G', loss_seg.item(), loss_AE.item(), loss_cls)
loss_g = loss_seg + loss_AE + loss_cls
epoch_seg_loss += loss_seg
epoch_AE_loss += loss_AE
epoch_cls_loss += loss_cls
optimizer_G.zero_grad()
loss_g.backward()
optimizer_G.step()
g_epoch_loss += loss_g.item()
batch_time = time.time() - end
print('g_batch_loss: %.5f, d_batch_loss: %.5f, batch_time:%.5f'%(loss_g.item(), loss_d.item(), batch_time))
print('[epoch %d] g_epoch-loss: %.5f, d_epoch_loss: %.5f'%(epoch+1, g_epoch_loss/(i+1), d_epoch_loss/(i+1)))
writer.add_scalar('Train/g_loss', g_epoch_loss/(i+1), epoch+1)
writer.add_scalar('Train/d_loss', d_epoch_loss/(i+1), epoch+1)
writer.add_scalar('Train/seg_loss', epoch_seg_loss/(i+1), epoch+1)
writer.add_scalar('Train/AE_loss', epoch_AE_loss/(i+1), epoch+1)
writer.add_scalar('Train/cls_loss', epoch_cls_loss/(i+1), epoch+1)
writer.add_scalar('Train/recon_loss', epoch_recon_loss/(i+1), epoch+1)
writer.add_scalar('Train/dis_loss', epoch_dis_loss/(i+1), epoch+1)
if os.path.isdir('%s%s/'%(options.cp_path, options.unique_name)):
pass
else:
os.mkdir('%s%s/'%(options.cp_path, options.unique_name))
if (epoch+1) % 10 == 0:
torch.save(net.state_dict(), '%s%s/CP%d.pth'%(options.cp_path, options.unique_name, epoch+1))
torch.save(AENet.state_dict(), '%s%s/AE_CP%d.pth'%(options.cp_path, options.unique_name, epoch+1))
torch.cuda.empty_cache()
if (epoch+1) % 1 == 0:
_, small_dice_list, _ = validation(net, test_data_list, test_label_list, test_center_list)
avg_dice = small_dice_list.mean()
if avg_dice >= best_dice:
best_dice = avg_dice
torch.save(net.state_dict(), '%s%s/best.pth'%(options.cp_path, options.unique_name))
writer.add_scalar('Test_small/AVG_Dice', avg_dice, epoch+1)
for idx in range(3):
writer.add_scalar('Test_small/Dice%d'%(idx+1), small_dice_list[idx], epoch+1)
print('save done')
print('dice: %.5f/best dice: %.5f'%(avg_dice, best_dice))
def calc_discriminator_loss(pred_small, recon_pred, code_pred, prob_pred, feat_pred, true_small, recon_true, code_true, prob_true, feat_true, valid, fake):
loss_recon = 0.999*(F.mse_loss(recon_pred, torch.sigmoid(pred_small.detach())) + F.mse_loss(recon_true, true_small))
loss_dis = -0.001*(F.mse_loss(code_pred, code_true) + 0.2*F.mse_loss(feat_pred[0], feat_true[0]) + 0.2*F.mse_loss(feat_pred[1], feat_true[1]))
return loss_recon, loss_dis
def calc_seg_loss(pred_small, recon_pred, code_pred, prob_pred, feat_pred, true_small, recon_true, code_true, prob_true, feat_true, criterion_bfl, criterion_bdl, valid):
loss_seg = criterion_bfl(pred_small, true_small)
loss_seg += 0.5*criterion_bdl(pred_small, true_small)
loss_AE = 5*F.mse_loss(code_pred, code_true)
loss_AE += F.mse_loss(feat_pred[0], feat_true[0]) + F.mse_loss(feat_pred[1], feat_true[1]) + F.mse_loss(F.sigmoid(pred_small), true_small)
return loss_seg, loss_AE, 0#loss_cls
def load_test_data(data_path):
test_name_list = [
'0522c0555', '0522c0576', '0522c0598', '0522c0659', '0522c0661',
'0522c0667', '0522c0669', '0522c0708', '0522c0727', '0522c0746',]
test_data_list = []
test_label_list = []
test_center_list = []
for name in test_name_list:
index_name = name.split('_')[0]
CT = sitk.ReadImage(data_path + '/%s'%name + '_data.nii.gz')
label = sitk.ReadImage(data_path + '/%s_label.nii.gz'%index_name)
center = find_center(label)
test_data_list.append(CT)
test_label_list.append(label)
test_center_list.append(center)
return test_data_list, test_label_list, test_center_list
def validation(net, test_data_list, test_label_list, test_center_list):
dicecomputer = sitk.LabelOverlapMeasuresImageFilter()
total_dice = 0
dice_list = np.zeros(9)
distance_list = np.zeros(3)
small_dice_list = np.zeros(3)
small_index = [2,4,5]
for i in range(len(test_data_list)):
tmp_dice_list = np.zeros(9)
tmp_small_dice_list = np.zeros(3)
itkCT = test_data_list[i]
gt_center = test_center_list[i]
itkLabel = test_label_list[i]
itkPred, itksmallPred, pred_center = evaluation(net, itkCT, SMALL=True)
tmp_distance_list = cal_distance(pred_center, gt_center, itkCT)
for idx in range(1, 10):
dicecomputer.Execute(itkLabel==idx, itkPred==idx)
dice = dicecomputer.GetDiceCoefficient()
tmp_dice_list[idx-1] += dice
for idx in range(3):
dicecomputer.Execute(itkLabel==small_index[idx], itksmallPred==small_index[idx])
dice = dicecomputer.GetDiceCoefficient()
tmp_small_dice_list[idx] += dice
print('dice', tmp_dice_list.mean(), 'distance', tmp_distance_list.mean())
print('small dice', tmp_small_dice_list.mean(), tmp_small_dice_list)
small_dice_list += tmp_small_dice_list
dice_list += tmp_dice_list
distance_list += tmp_distance_list
dice_list /= len(test_data_list)
small_dice_list /= len(test_data_list)
distance_list /= len(test_data_list)
return dice_list, small_dice_list, distance_list
if __name__ == '__main__':
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=300, type='int',
help='number of epochs')
parser.add_option('-b', '--batch_size', dest='batch_size', default=1,
type='int', help='batch size')
parser.add_option('-l', '--learning-rate', dest='lr', default=0.1,
type='float', help='learning rate')
parser.add_option('-c', '--resume', type='str', dest='load', default='./checkpoint/heatmap_best.pth',
help='load pretrained model')
parser.add_option('-p', '--checkpoint-path', type='str', dest='cp_path',
default='./checkpoint/', help='checkpoint path')
parser.add_option('-o', '--log-path', type='str', dest='log_path',
default='./log/', help='log path')
parser.add_option('--data_path', type='str', dest='data_path',
default='/research/cbim/vast/yg397/OAR/dataset/MICCAI2015_dataset/', help='data_path')
parser.add_option('-m', type='str', dest='model',
default='focusnet', help='use which model')
parser.add_option('-u', '--unique_name', type='str', dest='unique_name',
default='adv_test', help='use which model')
parser.add_option('--norm', type='str', dest='norm', default='bn')
parser.add_option('--gpu', type='str', dest='gpu',
default='3')
np.set_printoptions(precision=5)
(options, args) = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = options.gpu
pdb.set_trace()
print('use model:', options.model)
if options.model == 'focusnet':
net = focus_net(1, 10, se=True, norm=options.norm, SOSNet=True)
AE_path = './checkpoint/MICCAI_AE_best.pth'
AENet = ConvAE(1, 1, 512)
AENet = nn.DataParallel(AENet)
#AENet = load_my_state_dict(AENet, torch.load(AE_path))
pth = torch.load(AE_path)
AENet.load_state_dict(pth, strict=True)
print('AE loaded from {}'.format(AE_path))
if options.load:
net = load_my_state_dict(net, torch.load(options.load))
print('Model loaded from {}'.format(options.load))
net.cuda()
AENet.cuda()
train_net(net, AENet, options)
print('done')