-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_explicd.py
321 lines (221 loc) · 12 KB
/
train_explicd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import numpy as np
import timm
from dataset.isic_dataset import SkinDataset
from model import ExpLICD
from torchvision import transforms, models
from sklearn.metrics import balanced_accuracy_score
import copy
from torch.utils.data import DataLoader
from optparse import OptionParser
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import make_grid, save_image
import utils
import matplotlib.pyplot as plt
import os
import sys
import time
import math
import pdb
DEBUG = False
dataset_dict = {
'isic2018': SkinDataset,
}
def train_net(model, config):
print(config.unique_name)
train_transforms = copy.deepcopy(config.preprocess)
train_transforms.transforms.pop(0)
if model.model_name != 'clip':
train_transforms.transforms.pop(0)
train_transforms.transforms.insert(0, transforms.RandomVerticalFlip())
train_transforms.transforms.insert(0, transforms.RandomHorizontalFlip())
train_transforms.transforms.insert(0, transforms.RandomResizedCrop(size=(224,224), scale=(0.75, 1.0), ratio=(0.75, 1.33), interpolation=utils.get_interpolation_mode('bicubic')))
train_transforms.transforms.insert(0, transforms.ToPILImage())
#if config.dataset == 'isic2018':
# train_transforms.transforms.insert(-1, utils.gray_world())
val_transforms = copy.deepcopy(config.preprocess)
val_transforms.transforms.insert(0, transforms.ToPILImage())
#if config.dataset == 'isic2018':
# val_transforms.transforms.insert(-1, utils.gray_world())
trainset = dataset_dict[config.dataset](config.data_path, mode='train', transforms=train_transforms, flag=config.flag, debug=DEBUG, config=config, return_concept_label=True)
trainLoader = DataLoader(trainset, batch_size=config.batch_size, shuffle=True, num_workers=8, drop_last=True)
valset = dataset_dict[config.dataset](config.data_path, mode='val', transforms=val_transforms, flag=config.flag, debug=DEBUG, config=config, return_concept_label=True)
valLoader = DataLoader(valset, batch_size=config.batch_size, shuffle=False, num_workers=2, drop_last=False)
testset = dataset_dict[config.dataset](config.data_path, mode='test', transforms=val_transforms, flag=config.flag, debug=DEBUG, config=config, return_concept_label=True)
testLoader = DataLoader(testset, batch_size=config.batch_size, shuffle=False, num_workers=2, drop_last=False)
writer = SummaryWriter(config.log_path+config.unique_name)
if config.cls_weight == None:
criterion = nn.CrossEntropyLoss().cuda()
else:
lesion_weight = torch.FloatTensor(config.cls_weight).cuda()
criterion = nn.CrossEntropyLoss(weight=lesion_weight).cuda()
if config.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=config.lr, momentum=0.9, weight_decay=0.0005)
elif config.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=config.lr)
elif config.optimizer == 'adamw':
optimizer = optim.AdamW([
{'params': model.get_backbone_params(), 'lr': config.lr * 0.1},
{'params': model.get_bridge_params(), 'lr': config.lr},
])
scaler = torch.cuda.amp.GradScaler() if config.amp else None
BMAC, acc, _, _ = validation(model, valLoader, criterion)
print('BMAC: %.5f, Acc: %.5f'%(BMAC, acc))
best_acc = 0
for epoch in range(config.epochs):
print('Starting epoch {}/{}'.format(epoch+1, config.epochs))
batch_time = 0
epoch_loss_cls = 0
epoch_loss_concept = 0
model.train()
end = time.time()
exp_scheduler = utils.exp_lr_scheduler_with_warmup(optimizer, init_lr=config.lr, epoch=epoch, warmup_epoch=config.warmup_epoch, max_epoch=config.epochs)
for i, (data, label, concept_label) in enumerate(trainLoader, 0):
x, target = data.float().cuda(), label.long().cuda()
concept_label = concept_label.long().cuda()
optimizer.zero_grad()
if config.amp:
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
cls_logits, image_logits_dict = model(x)
loss_cls = criterion(cls_logits, target)
loss_concepts = 0
idx = 0
for key in net.concept_token_dict.keys():
image_concept_loss = F.cross_entropy(image_logits_dict[key], concept_label[:, idx])
loss_concepts += image_concept_loss
idx += 1
loss = loss_cls + loss_concepts / idx
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
cls_logits, image_logits_dict = model(x)
loss_cls = criterion(cls_logits, target)
loss_concepts = 0
idx = 0
for key in net.concept_token_dict.keys():
image_concept_loss = F.cross_entropy(image_logits_dict[key], concept_label[:, idx])
loss_concepts += image_concept_loss
idx += 1
loss = loss_cls + loss_concepts / idx
loss.backward()
optimizer.step()
epoch_loss_cls += loss_cls.item()
epoch_loss_concept += loss_concepts.item()
batch_time = time.time() - end
end = time.time()
print(i, 'loss_cls: %.5f, loss_concept: %.5f, batch_time: %.5f' % (loss.item(), loss_concepts.item(), batch_time))
print('[epoch %d] epoch loss_cls: %.5f, epoch_loss_concept: %.5f' % (epoch+1, epoch_loss_cls/(i+1), epoch_loss_concept/(i+1) ))
writer.add_scalar('Train/Loss_cls', epoch_loss_cls/(i+1), epoch+1)
writer.add_scalar('Train/Loss_concept', epoch_loss_concept/(i+1), epoch+1)
if not os.path.isdir('%s%s/'%(config.cp_path, config.unique_name)):
os.makedirs('%s%s/'%(config.cp_path, config.unique_name))
if (epoch+1) % 50 == 0:
torch.save(model.state_dict(), '%s%s/CP%d.pth'%(config.cp_path, config.unique_name, epoch+1))
val_BMAC, val_acc, val_loss_cls, val_loss_concept = validation(model, valLoader, criterion)
writer.add_scalar('Val/BMAC', val_BMAC, epoch+1)
writer.add_scalar('Val/Acc', val_acc, epoch+1)
writer.add_scalar('Val/val_loss_cls', val_loss_cls, epoch+1)
writer.add_scalar('Val/val_loss_concept', val_loss_concept, epoch+1)
test_BMAC, test_acc, test_loss_cls, test_loss_concept = validation(model, testLoader, criterion)
writer.add_scalar('Test/BMAC', test_BMAC, epoch+1)
writer.add_scalar('Test/Acc', test_acc, epoch+1)
writer.add_scalar('Test/test_loss_cls', test_loss_cls, epoch+1)
writer.add_scalar('Test/test_loss_concept', test_loss_concept, epoch+1)
lr = optimizer.param_groups[0]['lr']
writer.add_scalar('LR/lr', lr, epoch+1)
if val_BMAC >= best_acc:
best_acc = val_BMAC
if not os.path.exists(config.cp_path):
os.makedirs(config.cp_path)
torch.save(model.state_dict(), '%s%s/best.pth'%(config.cp_path, config.unique_name))
print('save done')
print('BMAC: %.5f/best BMAC: %.5f, Acc: %.5f'%(val_BMAC, best_acc, val_acc))
def validation(model, dataloader, criterion):
net = model
net.eval()
losses_cls = 0
losses_concepts = 0
pred_list = np.zeros((0), dtype=np.uint8)
gt_list = np.zeros((0), dtype=np.uint8)
with torch.no_grad():
for i, (data, label, concept_label) in enumerate(dataloader):
data, label = data.cuda(), label.long().cuda()
concept_label = concept_label.long().cuda()
cls_logits, image_logits_dict = net(data)
loss_cls = criterion(cls_logits, label)
losses_cls += loss_cls.item()
tmp_loss_concepts = 0
idx = 0
for key in net.concept_token_dict.keys():
image_concept_loss = F.cross_entropy(image_logits_dict[key], concept_label[:, idx])
tmp_loss_concepts += image_concept_loss.item()
idx += 1
losses_concepts += tmp_loss_concepts / len(list(net.concept_token_dict.keys()))
_, label_pred = torch.max(cls_logits, dim=1)
pred_list = np.concatenate((pred_list, label_pred.cpu().numpy().astype(np.uint8)), axis=0)
gt_list = np.concatenate((gt_list, label.cpu().numpy().astype(np.uint8)), axis=0)
BMAC = balanced_accuracy_score(gt_list, pred_list)
correct = np.sum(gt_list == pred_list)
acc = 100 * correct / len(pred_list)
return BMAC, acc, losses_cls/(i+1), losses_concepts/(i+1)
if __name__ == '__main__':
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=150, type='int',
help='number of epochs')
parser.add_option('-b', '--batch_size', dest='batch_size', default=128,
type='int', help='batch size')
parser.add_option('--warmup_epoch', dest='warmup_epoch', default=5, type='int')
parser.add_option('--optimizer', dest='optimizer', default='adamw', type='str')
parser.add_option('-l', '--lr', dest='lr', default=0.0001,
type='float', help='learning rate')
parser.add_option('-c', '--resume', type='str', dest='load', default=False,
help='load pretrained model')
parser.add_option('-p', '--checkpoint-path', type='str', dest='cp_path',
#default='/data/yunhe/Liver/auto-aug/checkpoint/', help='checkpoint path')
default='./checkpoint/', help='checkpoint path')
parser.add_option('-o', '--log-path', type='str', dest='log_path',
default='./log/', help='log path')
parser.add_option('-m', '--model', type='str', dest='model',
default='explicd', help='use which model')
parser.add_option('--linear-probe', dest='linear_probe', action='store_true', help='if use linear probe finetuning')
parser.add_option('-d', '--dataset', type='str', dest='dataset',
default='isic2018', help='name of dataset')
parser.add_option('--data-path', type='str', dest='data_path',
default='/data/local/yg397/dataset/isic2018/', help='the path of the dataset')
parser.add_option('-u', '--unique_name', type='str', dest='unique_name',
default='test', help='name prefix')
parser.add_option('--flag', type='int', dest='flag', default=2)
parser.add_option('--gpu', type='str', dest='gpu',
default='0')
parser.add_option('--amp', action='store_true', help='if use mixed precision training')
(config, args) = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu
config.log_path = config.log_path + config.dataset + '/'
config.cp_path = config.cp_path + config.dataset + '/'
print('use model:', config.model)
num_class_dict = {
'isic2018': 7,
}
cls_weight_dict = {
'isic2018': [1, 0.5, 1.2, 1.3, 1, 2, 2],
}
config.cls_weight = cls_weight_dict[config.dataset]
config.num_class = num_class_dict[config.dataset]
from concept_dataset import explicid_isic_dict
concept_list = explicid_isic_dict
net = ExpLICD(concept_list=concept_list, model_name='biomedclip', config=config)
# We find using orig_in21k vit weights works better than biomedclip vit weights
# Delete the following if want to use biomedclip weights
vit = timm.create_model('vit_base_patch16_224.orig_in21k', pretrained=True, num_classes=config.num_class)
vit.head = nn.Identity()
net.model.visual.trunk.load_state_dict(vit.state_dict())
if config.load:
net.load_state_dict(torch.load(config.load))
print('Model loaded from {}'.format(config.load))
net.cuda()
train_net(net, config)
print('done')