Skip to content
This repository has been archived by the owner on Aug 19, 2023. It is now read-only.

链接中提供模型精度测试的几点疑问? #234

Open
yukaizhou opened this issue Aug 16, 2021 · 2 comments
Open

链接中提供模型精度测试的几点疑问? #234

yukaizhou opened this issue Aug 16, 2021 · 2 comments

Comments

@yukaizhou
Copy link

首先非常感谢博主的代码开源,感谢🙏。我的疑问是 您提供模型的33.5是在val2017上的精度吗?其次就是您说33.5的精度是在600px上得到的,但我看您代码中分为最大最小值,都不等于600,请问这是什么原因呢?期待您的回复,感谢!

@yukaizhou
Copy link
Author

hi yhenon have you update the pretrained model ?thank in advance

@yukaizhou
Copy link
Author

CUDA available: True
loading annotations into memory...
Done (t=0.57s)
creating index...
index created!
Loading and preparing results...
DONE (t=8.47s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type bbox
DONE (t=90.08s).
Accumulating evaluation results...
DONE (t=15.75s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.346
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.516
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.369
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.180
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.381
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.486
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.306
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.487
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.339
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.581
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.699

I just download the repost pth and the surce code,then get a more better map

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant