We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I tried the given example with tf 1.14.
` from tensorflow.keras.models import Sequential from keras_spp.spp.SpatialPyramidPooling import SpatialPyramidPooling from keras.layers import Convolution2D, Activation, MaxPooling2D, Dense
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=(3, None, None))) model.add(Activation('relu')) model.add(Convolution2D(32, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(SpatialPyramidPooling([1, 2, 4])) model.add(Dense(num_classes)) model.add(Activation('softmax'))`
Error received:
`--------------------------------------------------------------------------- TypeError Traceback (most recent call last) in () 6 7 # uses theano ordering. Note that we leave the image size as None to allow multiple image sizes ----> 8 model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=(3, None, None))) 9 model.add(Activation('relu')) 10 model.add(Convolution2D(32, 3, 3))
~/anaconda3/envs/py3_tf14/lib/python3.6/site-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs) 455 self._self_setattr_tracking = False # pylint: disable=protected-access 456 try: --> 457 result = method(self, *args, **kwargs) 458 finally: 459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~/anaconda3/envs/py3_tf14/lib/python3.6/site-packages/tensorflow/python/keras/engine/sequential.py in add(self, layer) 152 raise TypeError('The added layer must be ' 153 'an instance of class Layer. ' --> 154 'Found: ' + str(layer)) 155 156 tf_utils.assert_no_legacy_layers([layer])
TypeError: The added layer must be an instance of class Layer. Found: <keras.layers.convolutional.Conv2D object at 0x7f8057c3ddd8> `
The text was updated successfully, but these errors were encountered:
Hey @ppurwar, not sure if this is still relevant to you, but I've posted my implementation/modifications which make the SPP compatible with tf.keras.
See #26
Sorry, something went wrong.
No branches or pull requests
I tried the given example with tf 1.14.
`
from tensorflow.keras.models import Sequential
from keras_spp.spp.SpatialPyramidPooling import SpatialPyramidPooling
from keras.layers import Convolution2D, Activation, MaxPooling2D, Dense
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=(3, None, None)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(SpatialPyramidPooling([1, 2, 4]))
model.add(Dense(num_classes))
model.add(Activation('softmax'))`
Error received:
`---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in ()
6
7 # uses theano ordering. Note that we leave the image size as None to allow multiple image sizes
----> 8 model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=(3, None, None)))
9 model.add(Activation('relu'))
10 model.add(Convolution2D(32, 3, 3))
~/anaconda3/envs/py3_tf14/lib/python3.6/site-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
455 self._self_setattr_tracking = False # pylint: disable=protected-access
456 try:
--> 457 result = method(self, *args, **kwargs)
458 finally:
459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~/anaconda3/envs/py3_tf14/lib/python3.6/site-packages/tensorflow/python/keras/engine/sequential.py in add(self, layer)
152 raise TypeError('The added layer must be '
153 'an instance of class Layer. '
--> 154 'Found: ' + str(layer))
155
156 tf_utils.assert_no_legacy_layers([layer])
TypeError: The added layer must be an instance of class Layer. Found: <keras.layers.convolutional.Conv2D object at 0x7f8057c3ddd8>
`
The text was updated successfully, but these errors were encountered: