Skip to content

Latest commit

 

History

History
112 lines (83 loc) · 3.91 KB

README.md

File metadata and controls

112 lines (83 loc) · 3.91 KB

FedGCN: Convergence-Communication Tradeoffs in Federated Training of Graph Convolutional Networks (NeurIPS 2023)

Introduction

This repository contains the implementation of the FedGCN algorithm, that leverages federated learning to efficiently train Graph Convolutional Network (GCN) models for semi-supervised node classification. It achieves rapid convergence while minimizing communication overhead. The algorithm implements a framework, where clients exclusively interact with the central server during a single pre-training step.

Paper: FedGCN: Convergence-Communication Tradeoffs in Federated Training of Graph Convolutional Networks

Upgrading: FedGraph Library with Real Distributed Communication

https://github.com/FedGraph/fedgraph

Google Colab Example for Quick Start

https://github.com/yh-yao/FedGCN/blob/master/FedGCN_Colab_Example.ipynb

Quick Installation

git clone https://github.com/yh-yao/FedGCN.git

conda create --name fedgcn python=3.10
conda activate fedgcn

pip install torch_geometric
pip install ray
pip install ogb
pip install tensorboard

pip install torch_geometric

#for CPU version
pip install torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+cpu.html

#for GPU version with CUDA 11.8
pip install torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+cu118.html
# trouble shoot https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html

Alternate Installation

git clone https://github.com/yh-yao/FedGCN.git

pip install virtualenv
virtualenv <virtual-environment-name>

# On MacOS/Linux:
source <virtual-environment-name>/bin/activate
# On Windows:
venv\Scripts\activate

pip install -r requirements.txt

Local Simulation:

Once the code is in place along with all the required packages, the code can be run using the command below:

python src/fedgcn_run.py -d=<dataset_name> -f=fedgcn -nl=<num_layers> -nhop=<num_hops> -iid_b=<beta_IID> -r=<repeat_frequency> -n=<num_trainers>

For example: python src/fedgcn_run.py -d=cora -f=fedgcn -nl=2 -nhop=2 -iid_b=100 -r=3 -n=5

You can also specify other arguments as needed. Here is a detailed list of all the arguments available:

Argument Overview Data Type Default value
-d dataset_name String Cora
-f Fed_type String Fed_gcn
-nl Num_layers Int 2
-nhop Num_hops Int 2
-iid_b Beta_IID Float 10000
-r Repeat_frequency Int 10
-c num_global_rounds Int 100
-i num_local_step Int 3
-lr Learning_rate Float 0.5
-g If_gpu
-l Log_directory string ./runs
-n Num_trainers int 5

Distributed Training:

  1. Start the cluster, see config.yaml for dependency configuration
    $ ray up config.yaml
  2. Submit enter-point script
    $ ray submit config.yaml fed_training.py 
    
  3. Stop nodes in cluster, optionally you can terminate them using AWS console or CLI.
    $ ray down config.yaml

Datasets

Dataset Graph Type #Nodes #Edges #Classes
Cora Citation Network 2,708 10,556 7
CiteSeer Citation Network 3,327 9,104 6
Reddit Social Network 232,965 114,615,892 41
PubMed Citation Network - Life Sciences 19,717 88,648 3
ogbn-products Product Recommendation 2,449,029 61,859,140 47
ogbn-arxiv Citation Network 169,343 1,166,243 40

FedGCN Team

Yuhang Yao (CMU), Jiayu Chang (CMU), Shoba Arunasalam (CMU), Xinyi (Cynthia) Fan (CMU), Weizhao Jin (USC)