-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcollect_results.py
183 lines (154 loc) · 6.15 KB
/
collect_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import collections
import argparse
import functools
import glob
import pickle
import itertools
import json
import os
import random
import sys
import numpy as np
import tqdm
from domainbed import datasets
from domainbed import algorithms
from domainbed.lib import misc, reporting
from domainbed import model_selection
from domainbed.lib.query import Q
import warnings
def format_mean(data, latex):
"""Given a list of datapoints, return a string describing their mean and
standard error"""
if len(data) == 0:
return None, None, "X"
mean = 100 * np.mean(list(data))
err = 100 * np.std(list(data) / np.sqrt(len(data)))
if latex:
return mean, err, "{:.1f} $\\pm$ {:.1f}".format(mean, err)
else:
return mean, err, "{:.1f} +/- {:.1f}".format(mean, err)
def print_table(table, header_text, row_labels, col_labels, colwidth=10,
latex=True):
"""Pretty-print a 2D array of data, optionally with row/col labels"""
print("")
if latex:
num_cols = len(table[0])
print("\\begin{center}")
print("\\adjustbox{max width=\\textwidth}{%")
print("\\begin{tabular}{l" + "c" * num_cols + "}")
print("\\toprule")
else:
print("--------", header_text)
for row, label in zip(table, row_labels):
row.insert(0, label)
if latex:
col_labels = ["\\textbf{" + str(col_label).replace("%", "\\%") + "}"
for col_label in col_labels]
table.insert(0, col_labels)
for r, row in enumerate(table):
misc.print_row(row, colwidth=colwidth, latex=latex)
if latex and r == 0:
print("\\midrule")
if latex:
print("\\bottomrule")
print("\\end{tabular}}")
print("\\end{center}")
def print_results_tables(records, selection_method, latex):
"""Given all records, print a results table for each dataset."""
grouped_records = reporting.get_grouped_records(records).map(lambda group:
{ **group, "sweep_acc": selection_method.sweep_acc(group["records"]) }
).filter(lambda g: g["sweep_acc"] is not None)
# read algorithm names and sort (predefined order)
alg_names = Q(records).select("args.algorithm").unique()
alg_names = ([n for n in algorithms.ALGORITHMS if n in alg_names] +
[n for n in alg_names if n not in algorithms.ALGORITHMS])
# read dataset names and sort (lexicographic order)
dataset_names = Q(records).select("args.dataset").unique().sorted()
dataset_names = [d for d in datasets.DATASETS if d in dataset_names]
for dataset in dataset_names:
if latex:
print()
print("\\subsubsection{{{}}}".format(dataset))
test_envs = range(datasets.num_environments(dataset))
table = [[None for _ in [*test_envs, "Avg"]] for _ in alg_names]
for i, algorithm in enumerate(alg_names):
means = []
for j, test_env in enumerate(test_envs):
trial_accs = (grouped_records
.filter_equals(
"dataset, algorithm, test_env",
(dataset, algorithm, test_env)
).select("sweep_acc"))
mean, err, table[i][j] = format_mean(trial_accs, latex)
means.append(mean)
if None in means:
table[i][-1] = "X"
else:
table[i][-1] = "{:.1f}".format(sum(means) / len(means))
col_labels = [
"Algorithm",
*datasets.get_dataset_class(dataset).ENVIRONMENTS,
"Avg"
]
header_text = (f"Dataset: {dataset}, "
f"model selection method: {selection_method.name}")
print_table(table, header_text, alg_names, list(col_labels),
colwidth=20, latex=latex)
# Print an "averages" table
if latex:
print()
print("\\subsubsection{Averages}")
table = [[None for _ in [*dataset_names, "Avg"]] for _ in alg_names]
for i, algorithm in enumerate(alg_names):
means = []
for j, dataset in enumerate(dataset_names):
trial_averages = (grouped_records
.filter_equals("algorithm, dataset", (algorithm, dataset))
.group("trial_seed")
.map(lambda trial_seed, group:
group.select("sweep_acc").mean()
)
)
mean, err, table[i][j] = format_mean(trial_averages, latex)
means.append(mean)
if None in means:
table[i][-1] = "X"
else:
table[i][-1] = "{:.1f}".format(sum(means) / len(means))
col_labels = ["Algorithm", *dataset_names, "Avg"]
header_text = f"Averages, model selection method: {selection_method.name}"
print_table(table, header_text, alg_names, col_labels, colwidth=25,
latex=latex)
if __name__ == "__main__":
np.set_printoptions(suppress=True)
parser = argparse.ArgumentParser(
description="Domain generalization testbed")
parser.add_argument("--input_dir", type=str, default="sweepERM/resnet18/")
parser.add_argument("--latex", action="store_true")
args = parser.parse_args()
results_file = "results.tex" if args.latex else "results.txt"
sys.stdout = misc.Tee(os.path.join(args.input_dir, results_file), "w")
records = reporting.load_records(args.input_dir)
if args.latex:
print("\\documentclass{article}")
print("\\usepackage{booktabs}")
print("\\usepackage{adjustbox}")
print("\\begin{document}")
print("\\section{Full DomainBed results}")
print("% Total records:", len(records))
else:
print("Total records:", len(records))
SELECTION_METHODS = [
model_selection.IIDAccuracySelectionMethod,
model_selection.LeaveOneOutSelectionMethod,
model_selection.OracleSelectionMethod,
]
for selection_method in SELECTION_METHODS:
if args.latex:
print()
print("\\subsection{{Model selection: {}}}".format(
selection_method.name))
print_results_tables(records, selection_method, args.latex)
if args.latex:
print("\\end{document}")