-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.rb
277 lines (227 loc) · 6.51 KB
/
main.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
require 'minitest/autorun'
require 'minitest/unit'
require 'pry'
module World
class Entity
KINDOF_PROPOSITION = %i(atoms bottom negations disjunctions conjunctions conditionals)
def initialize
reset
end
def reset
@truth = KINDOF_PROPOSITION.reduce({}) do |hash, k|
hash[k] = []
hash
end
end
def <<(proposition)
# TODO 同じものがあったときの判定はここでやる
case proposition
when Atom then @truth[:atoms] << proposition
when Bottom then @truth[:bottom] << proposition
when Negation then @truth[:negations] << proposition
when Disjunction then @truth[:disjunctions] << proposition
when Conjunction then @truth[:conjunctions] << proposition
when Conditional then @truth[:conditionals] << proposition
end
end
def truth
@truth
end
def propositions
atoms + negations + disjunctions + conjunctions + conditionals
end
KINDOF_PROPOSITION.each do |sym|
define_method sym do
@truth[sym]
end
end
end
end
$world = World::Entity.new
class Proposition
BOTTOM_GIVE_ANY_PROPOSITION = -> (world) { true if world.bottom.count > 0 }
def false?
eval!.eql?(false)
end
def true?
eval!.eql?(true)
end
def initialize
@introduction_rules = []
@elimination_rules = []
@introduction_rules << BOTTOM_GIVE_ANY_PROPOSITION
end
def def!(world=$world)
@elimination_rules.each do |proc|
ary = proc.call(world)
ary.each do |proposition|
proposition.def!(world)
end
end
world << self
end
def world_if_this_be_defined(base_world=$world)
another_world = base_world.clone
def! another_world
another_world
end
def eval!(context=$world)
if @introduction_rules.any?{ |proc| proc.call(context) == true }
return true
else
return false
end
end
end
# P 原子論理式
# Atom.def!(:P)
class Atom < Proposition
attr_accessor :pred
def initialize(pred)
super()
@pred = pred
@introduction_rules << -> (world) do
world.atoms.any?{|atom| atom.pred == @pred}
end
end
def equal?(proposition)
@pred == proposition.pred
end
def propositions
[self]
end
end
Atm = Atom
class Propositional < Proposition
end
class Bottom < Propositional
def initialize
super
@introduction_rules << -> (world) do
world.negations.any?{|ng| ng.proposition.eval! }
end
end
def def!(world=$world)
if world.bottom.count > 0
raise 'Bottom is already defined'
else
world << self
end
end
end
class PropositionalConnective < Propositional
end
# 否定
class Negation < PropositionalConnective
attr_accessor :proposition
def initialize(proposition)
super()
@proposition = proposition
@introduction_rules << -> (world) do
another_world = @proposition.world_if_this_be_defined(world)
Bottom.new.eval!(another_world) == true
end
@elimination_rules << -> (world) do
if @proposition.is_a? Negation
[@proposition.proposition]
else
[]
end
end
end
def equal?(proposition)
return unless proposition.is_a? Negation
@proposition.equal? proposition.proposition
end
def propositions
@proposition.propositions << self
end
end
Ng = Negation
# 論理積
class Conjunction < PropositionalConnective
attr_accessor :proposition1, :proposition2
def initialize(proposition1, proposition2)
super()
@proposition1, @proposition2 = proposition1, proposition2
@introduction_rules << -> (world) do
@proposition1.eval!(world) && @proposition2.eval!(world)
end
@elimination_rules << -> (world) do
[@proposition1, @proposition2]
end
end
def equal?(proposition)
return false unless proposition.is_a? Conjunction
(@proposition1.equal?(proposition.proposition1) && @proposition2.equal?(proposition.proposition2)) ||
(@proposition1.equal?(proposition.proposition2) && @proposition2.equal?(proposition.proposition1))
end
def propositions
@proposition1.propositions.concat @proposition2.propositions << self
end
end
AND = Conjunction
# 論理和
class Disjunction < PropositionalConnective
attr_accessor :proposition1, :proposition2
def initialize(proposition1, proposition2)
super()
@proposition1, @proposition2 = proposition1, proposition2
@introduction_rules << -> (world) do
@proposition1.eval!(world) || @proposition2.eval!(world)
end
@elimination_rules << -> (world) do
another_world = @proposition1.world_if_this_be_defined(world)
another_world2 = @proposition2.world_if_this_be_defined(world)
ary = []
world.propositions.each do |proposition|
ary << proposition if proposition.eval!(another_world) && proposition.eval!(another_world2)
end
end
end
def equal?(proposition)
return false unless proposition.is_a? Disjunction
(@proposition1.equal?(proposition.proposition1) && @proposition2.equal?(proposition.proposition2)) ||
(@proposition1.equal?(proposition.proposition2) && @proposition2.equal?(proposition.proposition1))
end
def propositions
@proposition1.propositions.concat @proposition2.propositions << self
end
end
OR = Disjunction
class Conditional < PropositionalConnective
attr_accessor :proposition1, :proposition2
def initialize(proposition1, proposition2)
super()
@proposition1, @proposition2 = proposition1, proposition2
@introduction_rules << -> (world) do
another_world = @proposition1.world_if_this_be_defined(world)
@proposition2.eval!(another_world)
end
@elimination_rules << -> (world) do
if @proposition1.eval!(world)
[@proposition2]
else
[]
end
end
end
def equal?(proposition)
return false unless proposition.is_a? Conditional
(@proposition1.equal?(proposition.proposition1) && @proposition2.equal?(proposition.proposition2))
end
def propositions
@proposition1.propositions.concat @proposition2.propositions << self
end
end
class TestArray < MiniTest::Unit::TestCase
def test_utils
Disjunction.new(Atom.new(:p), Atom.new(:q)).def!
Conditional.new(Atom.new(:p), Atom.new(:r)).def!
Conditional.new(Atom.new(:q), Atom.new(:r)).def!
assert_equal(true, Atom.new(:r).eval!)
# Conditional.new(Atom.new(:p), Atom.new(:r)).def!
# Conditional.new(Atom.new(:q), Negation.new(Atom.new(:r))).def!
# assert_equal(true, Negation.new(Conjunction.new(Atom.new(:p), Atom.new(:q))).eval!)
end
end