-
Notifications
You must be signed in to change notification settings - Fork 0
/
pconvolve.rd
48 lines (45 loc) · 1.86 KB
/
pconvolve.rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
\name{pconvolve}
\alias{pconvolve}
\title{Calculate p-values for Copynumber Variations across Samples}
\description{
The amplification and deletion scores for a given loci i are computed
as equations which can be found in the 1/30/2013 meeting
minutes. Conceptually, the computation of the p-value is based on
permutation, where by each "column" of the matrix is shuffled multiple
times, abd a distribution of permuted score is computed for each locus
and compared to the observed score for that locus. See the equation in
the meeting minutes. In practice, the p-value can be computed in a
closed form using the concept of convolution. In R, this function uses
\code{convolve} to calculate the p-value analytically.
}
\usage{
pconvolve(fn, tau.amp=0.5, tau.del=-0.5, p.value.cutoff=0.05,
fdr.cutoff=0.25, plot.pdf=TRUE)
}
\arguments{
\item{fn}{The file containing the log2 ratios for all segments across
samples. Each row represents a segment and each column is from one
sample.}
\item{tau.amp}{log2 ratios above this value are kept.}
\item{tau.del}{log2 ratios below this value are kept}
\item{p.value.cutoff}{Cutoff for p-values.}
\item{fdr.cutoff}{Cutoff for FDRs}
\item{plot.pdf}{If this is set to \code{TRUE}, then this function will
skip plotting on the default device and print it to a PDF file.}
}
\seealso{
\code{\link{convolve}}, \code{\link{p.adjust}}
}
\examples{
## Calculate the p-value and FDR using the default parameters
pconvolve("matrix10_10.T.txt")
## Calculate the p-value and FDR using user defined parameters
pconvolve("matrix", tau.amp=1, tau.del=-1, p.value.cutoff=0.02, fdr.c
utoff=0.05, plot.pdf=TRUE)
}
\keyword{file}
\references{
\url{https://projects.zoho.com/portal/montilab#wiki/465555000000032025/Scoring-SCNAs.html}
\url{http://sas.uwaterloo.ca/~dlmcleis/s901/chapt5.pdf}
}
\author{Yu Fu \email{[email protected]}}