From 5684bcb5d0beba28b645758931251879655a3be9 Mon Sep 17 00:00:00 2001 From: yennanliu Date: Wed, 11 Oct 2023 17:48:28 +0800 Subject: [PATCH] update backtrack cheatsheet, 090 py --- doc/cheatsheet/backtrack.md | 96 +++++++++++++++------- leetcode_python/Backtracking/subsets-ii.py | 55 ++++++++++++- 2 files changed, 121 insertions(+), 30 deletions(-) diff --git a/doc/cheatsheet/backtrack.md b/doc/cheatsheet/backtrack.md index a590358f..c35276c2 100644 --- a/doc/cheatsheet/backtrack.md +++ b/doc/cheatsheet/backtrack.md @@ -33,17 +33,17 @@ - Problems types - - `Subsets` - - LC 78, 140, 17 + - Type 1) : `Subsets` (子集) + - Problems : LC 78, 90, 17 + - [代碼隨想錄 - 0078.子集](https://github.com/youngyangyang04/leetcode-master/blob/master/problems/0078.%E5%AD%90%E9%9B%86.md) + - (for loop call help func) + start_idx + for loop + pop(-1) - backtrack. find minumum case. transform the problem to `tree-problem`. via `start` remove already used numbers and return all cases - - (for loop call help func) + for loop + pop(-1) - - "全排列" ```python # V1 # ... cur = [] res = [] - def help(cur): + def help(start_idx, cur): _cur = "".join(cur[:]) if _cur == s: res.append(cur[:]) @@ -51,10 +51,17 @@ if len(_cur) > len(s): cur = [] return - # NOTE !!! since we need get ALL sub group (全排列), so WE DON'T NEED deal with idx here - for i in range(len(wordDict)): + """ + NOTE !!! start_idx + + we need start_idx here to AVOID re-select previous element + """ + for i in range(start_idx, len(wordDict)): cur.append(wordDict[i]) - help(cur) + help(start_idx+1, cur) + """ + NOTE !!! pop(-1) + """ cur.pop(-1) # ... ``` @@ -78,30 +85,61 @@ } ``` + - `Subsets I` + - LC 78 + - start idx + backtrack + ```python + # python + class Solution: + def subsets(self, nums): + result = [] + path = [] + self.backtracking(nums, 0, path, result) + return result + + def backtracking(self, nums, startIndex, path, result): + result.append(path[:]) # NOTE here + if startIndex >= len(nums): # optional + return + for i in range(startIndex, len(nums)): # NOTE here : we start from startIndex every time + path.append(nums[i]) + self.backtracking(nums, i + 1, path, result) # NOTE here + path.pop(-1) # NOTE here + ``` + - `Subsets II` - LC 90 - ```java - // java - // https://leetcode.com/problems/subsets/solutions/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning/ - public List> subsetsWithDup(int[] nums) { - List> list = new ArrayList<>(); - Arrays.sort(nums); - backtrack(list, new ArrayList<>(), nums, 0); - return list; - } - - private void backtrack(List> list, List tempList, int [] nums, int start){ - list.add(new ArrayList<>(tempList)); - for(int i = start; i < nums.length; i++){ - if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates - tempList.add(nums[i]); - backtrack(list, tempList, nums, i + 1); - tempList.remove(tempList.size() - 1); - } - } + - start idx + backtrack + dedup (seen) + - dedup : can use dict counter or idx + ```python + # python + from collections import Counter + class Solution: + def subsetsWithDup(self, nums): + result = [] + path = [] + # sort nums, so same element are in neighbor + nums.sort() + # NOTE : we use _cnt for record how count of element and used element + _cnt = Counter(nums) + self.backtracking(nums, 0, path, result, _cnt) + return result + + def backtracking(self, nums, startIndex, path, result, _cnt): + if path not in result: # this line is optional + result.append(path[:]) # NOTE here + if startIndex >= len(nums): # optional + return + for i in range(startIndex, len(nums)): # NOTE here : we start from startIndex every time + if _cnt[nums[i]] > 0: + _cnt[nums[i]] -= 1 + path.append(nums[i]) + self.backtracking(nums, i + 1, path, result, _cnt) # NOTE here + path.pop(-1) # NOTE here + _cnt[nums[i]] += 1 ``` - - `Permutations (排列組合)` + - Type 2) : `Permutations (排列組合)` - LC 46 - backtrack. via `contains` remove already used numbers and return all cases - contains (visited) (or not in `cur`) + for loop + pop(-1) + help func @@ -175,7 +213,7 @@ } ``` - - `Combinations (組成)` + - Type 3) : `Combinations (組成)` - LC 77 - backtrack. via `start` remove already used numbers and return all cases - deal with `idx` !!! (start idx) diff --git a/leetcode_python/Backtracking/subsets-ii.py b/leetcode_python/Backtracking/subsets-ii.py index 54bfec9a..efe48307 100644 --- a/leetcode_python/Backtracking/subsets-ii.py +++ b/leetcode_python/Backtracking/subsets-ii.py @@ -29,7 +29,34 @@ """ # V0 -# IDEA : BACKTRACKING + LC 078 Subsets +# IDEA : BACKTRACK + LC 078 Subsets + dict +from collections import Counter +class Solution: + def subsetsWithDup(self, nums): + result = [] + path = [] + # sort nums, so same element are in neighbor + nums.sort() + # NOTE : we use _cnt for record how count of element and used element + _cnt = Counter(nums) + self.backtracking(nums, 0, path, result, _cnt) + return result + + def backtracking(self, nums, startIndex, path, result, _cnt): + if path not in result: # this line is optional + result.append(path[:]) # NOTE here + if startIndex >= len(nums): # optional + return + for i in range(startIndex, len(nums)): # NOTE here : we start from startIndex every time + if _cnt[nums[i]] > 0: + _cnt[nums[i]] -= 1 + path.append(nums[i]) + self.backtracking(nums, i + 1, path, result, _cnt) # NOTE here + path.pop(-1) # NOTE here + _cnt[nums[i]] += 1 + +# V0' +# IDEA : BACKTRACKING + LC 078 Subsets + dict from collections import Counter class Solution(object): def subsetsWithDup(self, nums): @@ -65,6 +92,32 @@ def help(start, tmp, _cnt): print ("res = " + str(res)) return res +# V0'''' +# IDEA : backtrack + seen +# https://github.com/youngyangyang04/leetcode-master/blob/master/problems/0090.%E5%AD%90%E9%9B%86II.md +class Solution: + def subsetsWithDup(self, nums): + result = [] + path = [] + used = [False] * len(nums) + nums.sort() # 去重需要排序 + self.backtracking(nums, 0, used, path, result) + return result + + def backtracking(self, nums, startIndex, used, path, result): + result.append(path[:]) # 收集子集 + for i in range(startIndex, len(nums)): + # used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过 + # used[i - 1] == False,说明同一树层 nums[i - 1] 使用过 + # 而我们要对同一树层使用过的元素进行跳过 + if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]: + continue + path.append(nums[i]) + used[i] = True + self.backtracking(nums, i + 1, used, path, result) + used[i] = False + path.pop() + # V0' # IDEA : BRUTE FORCE class Solution: