-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathredundant-connection.py
136 lines (109 loc) · 3.69 KB
/
redundant-connection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
684. Redundant Connection
Solved
Medium
Topics
Companies
In this problem, a tree is an undirected graph that is connected and has no cycles.
You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph.
Return an edge that can be removed so that the resulting graph is a tree of n nodes. If there are multiple answers, return the answer that occurs last in the input
Example 1:
Input: edges = [[1,2],[1,3],[2,3]]
Output: [2,3]
Example 2:
Input: edges = [[1,2],[2,3],[3,4],[1,4],[1,5]]
Output: [1,4]
Constraints:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
There are no repeated edges.
The given graph is connected.
"""
# V0
# V1
# https://blog.csdn.net/fuxuemingzhu/article/details/80487064
class Solution:
def findRedundantConnection(self, edges):
"""
:type edges: List[List[int]]
:rtype: List[int]
"""
tree = [-1] * (len(edges) + 1)
for edge in edges:
a = self.findRoot(edge[0], tree)
b = self.findRoot(edge[1], tree)
if a != b:
tree[a] = b
else:
return edge
def findRoot(self, x, tree):
if tree[x] == -1: return x
else:
root = self.findRoot(tree[x], tree)
tree[x] = root
return root
# V1'
# https://www.jiuzhang.com/solution/redundant-connection/#tag-highlight-lang-python
class Solution:
def findRedundantConnection(self, edges):
if not edges: return None
uf = UnionFind(len(edges))
for first, second in edges:
# check if 2 trees have same "father", if not, join them
if not uf.query(first,second):
uf.connect(first,second)
# keep the process till the same element shown ; or should be a loop
else:
return (first, second)
return None
class UnionFind(object):
def __init__(self,n):
self.father = {}
for i in range(1, n+1):
self.father[i] = i
def find(self, node):
path = []
while self.father[node]!= node:
node = self.father[node]
path.append(node)
for n in path:
self.father[n] = node
return node
def query(self, a, b):
return self.find(a) == self.find(b)
def connect(self, a, b):
self.father[self.find(a)] = self.find(b)
# if __name__== "__main__":
# t = Solution()
# x= t.findRedundantConnection([[1,2], [2,3], [3,4], [1,4], [1,5]])
# print(x)
# V2
# Time: O(nlog*n) ~= O(n), n is the length of the positions
# Space: O(n)
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
def find_set(self, x):
if self.set[x] != x:
self.set[x] = self.find_set(self.set[x]) # path compression.
return self.set[x]
def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root:
return False
self.set[min(x_root, y_root)] = max(x_root, y_root)
return True
class Solution(object):
def findRedundantConnection(self, edges):
"""
:type edges: List[List[int]]
:rtype: List[int]
"""
union_find = UnionFind(len(edges)+1)
for edge in edges:
if not union_find.union_set(*edge):
return edge
return []