-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathSubarraySumEqualsK.java
273 lines (244 loc) · 9.19 KB
/
SubarraySumEqualsK.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
package LeetCodeJava.HashTable;
// https://leetcode.com/problems/subarray-sum-equals-k/description/
import java.util.HashMap;
import java.util.Map;
/**
* 560. Subarray Sum Equals K
* Solved
* Medium
* Topics
* Companies
* Hint
* Given an array of integers nums and an integer k, return the total number of subarrays whose sum equals to k.
*
* A subarray is a contiguous non-empty sequence of elements within an array.
*
*
*
* Example 1:
*
* Input: nums = [1,1,1], k = 2
* Output: 2
* Example 2:
*
* Input: nums = [1,2,3], k = 3
* Output: 2
*
*
* Constraints:
*
* 1 <= nums.length <= 2 * 104
* -1000 <= nums[i] <= 1000
* -107 <= k <= 107
* Seen this question in a real interview before?
* 1/5
* Yes
* No
* Accepted
* 1.5M
* Submissions
* 3.4M
* Acceptance Rate
* 44.5%
* Topics
*/
public class SubarraySumEqualsK {
// V0
// IDEA : HASH MAP (fixed by gpt)
/**
*
* Explanation of Fixes:
*
* 1. Using presum - k Logic Properly:
* • If presum - k exists in the map, it means there is a subarray ending at the current index whose sum is k . Add the count of such prefix sums to the total.
*
* 2. Map Initialization:
* • Initializing the map with map.put(0, 1) allows the logic to handle cases where a subarray starting from index 0 equals k .
*
* 3. Updating the Map:
* • Instead of tracking indices, the map stores the count of occurrences of each prefix sum. This allows us to find how many subarrays can be formed using a specific prefix sum.
*
* 4. Simplifying Index-Based Logic:
* • Removed unnecessary index-based conditions (map.get(presum - k) == i + 1) which were incorrect and not required for this problem.
*/
public int subarraySum(int[] nums, int k) {
/**
* NOTE !!!
*
* use Map to store prefix sum and its count
*
* map : {prefixSum: count}
*
*
* -> since "same preSum may have multiple combination" within hashMap,
* so it's needed to track preSum COUNT, instead of its index
*/
Map<Integer, Integer> map = new HashMap<>();
int presum = 0;
int count = 0;
/**
* NOTE !!!
*
* Initialize the map with prefix sum 0 (to handle subarrays starting at index 0)
*
*
*
* Purpose of map.put(0, 1);
*
* 1. Handle the Initial Case:
* • The prefix sum presum starts at 0 before any elements of the array are processed.
* • Adding map.put(0, 1) ensures that if a subarray’s prefix sum equals k (e.g., the subarray itself equals k ), it is counted correctly.
*
* 2. Account for Subarrays Starting at Index 0:
* • Consider the case where the cumulative sum of elements up to a certain index j equals k : presum[j] = k
* • The subarray from index 0 to j should count as a valid subarray.
* • To check this condition, the code calculates presum - k and looks for it in the map. For subarrays starting at index 0, presum - k equals 0. Adding map.put(0, 1) ensures this case is handled properly.
*
* 3. Count Prefix Sums:
* • The value 1 in map.put(0, 1) represents the fact that there is one prefix sum of 0 initially (before processing any elements). This allows the algorithm to correctly count subarrays that sum to k as the prefix sum progresses.
*/
map.put(0, 1);
for (int num : nums) {
presum += num;
// Check if there's a prefix sum such that presum - k exists
if (map.containsKey(presum - k)) {
count += map.get(presum - k);
}
// Update the map with the current prefix sum
map.put(presum, map.getOrDefault(presum, 0) + 1);
}
return count;
}
// V0-1
// IDEA : HASH MAP (fixed by gpt)
public int subarraySum_0_1(int[] nums, int k) {
if (nums.length == 1){
if (nums[0] == k){
return 1;
}
return 0;
}
// map : {presum : count}
Map<Integer, Integer> map = new HashMap<>();
/** NOTE !!!
*
* init map as below
*
* Initialize the map with prefix sum 0 (to handle subarrays starting at index 0)
*/
map.put(0,1);
int preusm = 0;
int cnt = 0;
for (int i = 0; i < nums.length; i++){
int cur = nums[i];
preusm += cur;
/**
* Reason why update map after `count` update (e.g. map.put(preusm, map.getOrDefault(preusm, 0) + 1) after if condition)
*
* 1. Avoid Overcounting:
* • When checking if (map.containsKey(preusm - k)), you are looking for how many previous subarrays have a prefix sum of preusm - k.
* • If you update the map before this check (i.e., increment the count for the current preusm), you might mistakenly count the current subarray itself in this operation, leading to incorrect results.
*
* 2. Logical Order of Operations:
* • The purpose of the map is to store the counts of previous prefix sums seen so far.
* • When you calculate cnt += map.get(preusm - k), you are determining how many times the subarray sum k has been encountered up to this point.
* • Only after this check should you update the map to include the current preusm for subsequent iterations.
*
* 3. Current Subarray Shouldn’t Influence Itself:
* • In the current iteration, the subarray being evaluated shouldn’t count itself as contributing to the result. By updating the map after the check, you ensure the current prefix sum becomes available only for future iterations.
*
*/
//map.put(preusm, map.getOrDefault(preusm, 0) + 1);
if (map.containsKey(preusm - k)){
cnt += map.get(preusm - k);
}
// NOTE !! update map after `if condition`
map.put(preusm, map.getOrDefault(preusm, 0) + 1);
}
return cnt;
}
// V0-2
// IDEA : presum + hashmap
public int subarraySum_0_2(int[] nums, int k) {
if (nums.length == 1){
if (nums[0] == k){
return 1;
}
return 0;
}
int presum = 0;
int cnt = 0;
/**
* map{ presum : cnt}
*/
Map<Integer, Integer> map = new HashMap<>();
// init map as below
map.put(0,1);
for (int i = 0; i < nums.length; i++){
int cur = nums[i];
presum += cur;
/**
* sum(i,j) = presum(j+1) - presum(i)
*
* -> presum(j+1) - presum(i) = k
* -> presum(i) = presum(j+1) - k
*/
if (map.containsKey(presum - k)){
cnt += map.get(presum - k);
}
map.put(presum, map.getOrDefault(presum, 0)+1);
}
return cnt;
}
// V1
// IDEA : HASH MAP
// https://leetcode.com/problems/subarray-sum-equals-k/solutions/6143642/java-beats-9983-by-mohamedhazem3-9yj6/
public static int subarraySum_1(int[] nums, int k) {
int[] prefix = new int[nums.length + 1];
int out = 0;
HashMap<Integer, Integer> hm = new HashMap<>();
for (int i = 0; i < nums.length; i++)
prefix[i + 1] = prefix[i] + nums[i]; // Compute prefix sums
for (int i = 0; i < prefix.length; i++) {
if (hm.containsKey(prefix[i] - k)) // Check if required difference exists
out += hm.get(prefix[i] - k); // Add the frequency to the result
// Update HashMap with the current prefix sum
hm.put(prefix[i], hm.getOrDefault(prefix[i], 0) + 1);
}
return out;
}
// V2
// IDEA : HASH MAP
// https://leetcode.com/problems/subarray-sum-equals-k/solutions/3167609/explained-beats-964-using-hashmap-in-jav-0b6o/
public int subarraySum_2(int[] nums, int k) {
int sum = 0;
int ans = 0;
HashMap<Integer,Integer> map = new HashMap<>();
map.put(0,1);
for(int j=0;j<nums.length;j++){
sum += nums[j];
if(map.containsKey(sum -k)){
ans += map.get(sum-k);
}
map.put(sum,map.getOrDefault(sum,0)+1);
}
return ans;
}
// V3
// IDEA : HASH MAP
// https://leetcode.com/problems/subarray-sum-equals-k/solutions/803317/java-solution-with-detailed-explanation-yu2hg/
public int subarraySum_3(int[] nums, int k) {
int count = 0;
int[] sum = new int[nums.length + 1];
sum[0] = 0;
for (int i = 1; i <= nums.length; i++)
sum[i] = sum[i - 1] + nums[i - 1];
for (int start = 0; start < sum.length; start++) {
for (int end = start + 1; end < sum.length; end++) {
if (sum[end] - sum[start] == k)
count++;
}
}
return count;
}
}