forked from kohler/masstree-beta
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasstree_split.hh
244 lines (219 loc) · 7.4 KB
/
masstree_split.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* Masstree
* Eddie Kohler, Yandong Mao, Robert Morris
* Copyright (c) 2012-2013 President and Fellows of Harvard College
* Copyright (c) 2012-2013 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, subject to the conditions
* listed in the Masstree LICENSE file. These conditions include: you must
* preserve this copyright notice, and you cannot mention the copyright
* holders in advertising related to the Software without their permission.
* The Software is provided WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This
* notice is a summary of the Masstree LICENSE file; the license in that file
* is legally binding.
*/
#ifndef MASSTREE_SPLIT_HH
#define MASSTREE_SPLIT_HH 1
#include "masstree_tcursor.hh"
#include "btree_leaflink.hh"
namespace Masstree {
template <typename P>
int internode_split(internode<P> *nl, internode<P> *nr,
int p, typename internode<P>::ikey_type ka,
node_base<P> *value,
typename internode<P>::ikey_type &split_ikey,
int split_type)
{
// B+tree internal node insertion.
// Split nl, with items [0,T::width), into nl + nr, simultaneously
// inserting "ka:value" at position "p" (0 <= p <= T::width).
// The midpoint element of the result is stored in "split_ikey".
// Let mid = ceil(T::width / 2). After the split, the key at
// post-insertion position mid is stored in split_ikey. nl contains keys
// [0,mid) and nr contains keys [mid+1,T::width+1).
// If p < mid, then x goes into nl, pre-insertion item mid-1 goes into
// split_ikey, and the first element of nr is pre-insertion item mid.
// If p == mid, then x goes into split_ikey and the first element of
// nr is pre-insertion item mid.
// If p > mid, then x goes into nr, pre-insertion item mid goes into
// split_ikey, and the first element of nr is post-insertion item mid+1.
precondition(!nl->concurrent || (nl->locked() && nr->locked()));
int mid = (split_type == 2 ? nl->width : (nl->width + 1) / 2);
nr->nkeys_ = nl->width + 1 - (mid + 1);
if (p < mid) {
nr->child_[0] = nl->child_[mid];
nr->shift_from(0, nl, mid, nl->width - mid);
split_ikey = nl->ikey0_[mid - 1];
} else if (p == mid) {
nr->child_[0] = value;
nr->shift_from(0, nl, mid, nl->width - mid);
split_ikey = ka;
} else {
nr->child_[0] = nl->child_[mid + 1];
nr->shift_from(0, nl, mid + 1, p - (mid + 1));
nr->assign(p - (mid + 1), ka, value);
nr->shift_from(p + 1 - (mid + 1), nl, p, nl->width - p);
split_ikey = nl->ikey0_[mid];
}
for (int i = 0; i <= nr->nkeys_; ++i)
nr->child_[i]->set_parent(nr);
nl->mark_split();
if (p < mid) {
nl->nkeys_ = mid - 1;
return p;
} else {
nl->nkeys_ = mid;
return -1;
}
}
template <typename P>
typename P::ikey_type leaf_ikey(leaf<P> *nl,
const typename leaf<P>::permuter_type &perml,
const typename leaf<P>::key_type &ka,
int ka_i, int i)
{
if (i < ka_i)
return nl->ikey0_[perml[i]];
else if (i == ka_i)
return ka.ikey();
else
return nl->ikey0_[perml[i - 1]];
}
template <typename P>
int leaf_split(leaf<P> *nl, leaf<P> *nr,
int p, const typename leaf<P>::key_type &ka,
threadinfo *ti,
typename P::ikey_type &split_ikey)
{
// B+tree leaf insertion.
// Split nl, with items [0,T::width), into nl + nr, simultaneously
// inserting "ka:value" at position "p" (0 <= p <= T::width).
// Let mid = floor(T::width / 2) + 1. After the split,
// "nl" contains [0,mid) and "nr" contains [mid,T::width+1).
// If p < mid, then x goes into nl, and the first element of nr
// will be former item (mid - 1).
// If p >= mid, then x goes into nr.
precondition(!nl->concurrent || (nl->locked() && nr->locked()));
precondition(nl->nremoved_ == 0 && nl->size() >= nl->width - 1);
int width = nl->size(); // == nl->width or nl->width - 1
int mid = nl->width / 2 + 1;
if (p == 0 && !nl->prev_)
mid = 1;
else if (p == width && !nl->next_.ptr)
mid = width;
// Never split apart keys with the same ikey0.
typename leaf<P>::permuter_type perml(nl->permutation_);
typename P::ikey_type mid_ikey = leaf_ikey(nl, perml, ka, p, mid);
if (mid_ikey == leaf_ikey(nl, perml, ka, p, mid - 1)) {
int midl = mid - 2, midr = mid + 1;
while (1) {
if (midr <= width
&& mid_ikey != leaf_ikey(nl, perml, ka, p, midr)) {
mid = midr;
break;
} else if (midl >= 0
&& mid_ikey != leaf_ikey(nl, perml, ka, p, midl)) {
mid = midl + 1;
break;
}
--midl, ++midr;
}
invariant(mid > 0 && mid <= width);
}
typename leaf<P>::permuter_type::value_type pv = perml.value_from(mid - (p < mid));
for (int x = mid; x <= width; ++x)
if (x == p)
nr->assign_initialize(x - mid, ka, ti);
else {
nr->assign_initialize(x - mid, nl, pv & 15, ti);
pv >>= 4;
}
typename leaf<P>::permuter_type permr = leaf<P>::permuter_type::make_sorted(width + 1 - mid);
if (p >= mid)
permr.remove_to_back(p - mid);
nr->permutation_ = permr.value();
btree_leaflink<leaf<P> >::link_split(nl, nr);
split_ikey = nr->ikey0_[0];
return p >= mid ? 1 + (mid == width) : 0;
}
template <typename P>
node_base<P> *tcursor<P>::finish_split(threadinfo *ti)
{
node_type *n = n_;
node_type *child = leaf_type::make(n_->ksuf_size(), n_->node_ts_, ti);
child->assign_version(*n_);
ikey_type xikey[2];
int split_type = leaf_split(n_, static_cast<leaf_type *>(child),
ki_, ka_, ti, xikey[0]);
bool sense = false;
while (1) {
invariant(!n->concurrent || (n->locked() && child->locked() && (n->isleaf() || n->splitting())));
internode_type *next_child = 0;
internode_type *p = n->locked_parent(ti);
if (!p) {
internode_type *nn = internode_type::make(ti);
nn->child_[0] = n;
nn->assign(0, xikey[sense], child);
nn->nkeys_ = 1;
nn->parent_ = 0;
nn->mark_root();
fence();
n->set_parent(nn);
if (is_first_layer())
tablep_->root_ = nn;
} else {
int kp = internode_type::bound_type::upper(xikey[sense], *p);
if (p->size() < p->width)
p->mark_insert();
else {
next_child = internode_type::make(ti);
next_child->assign_version(*p);
next_child->mark_nonroot();
kp = internode_split(p, next_child, kp, xikey[sense],
child, xikey[!sense], split_type);
}
if (kp >= 0) {
p->shift_up(kp + 1, kp, p->size() - kp);
p->assign(kp, xikey[sense], child);
fence();
++p->nkeys_;
}
}
if (n->isleaf()) {
leaf_type *nl = static_cast<leaf_type *>(n);
leaf_type *nr = static_cast<leaf_type *>(child);
permuter_type perml(nl->permutation_);
int width = perml.size();
perml.set_size(width - nr->size());
// removed item, if any, must be @ perml.size()
if (width != nl->width)
perml.exchange(perml.size(), nl->width - 1);
nl->mark_split();
nl->permutation_ = perml.value();
if (split_type == 0) {
kp_ = perml.back();
nl->assign(kp_, ka_, ti);
} else {
ki_ = kp_ = ki_ - perml.size();
n_ = nr;
}
}
if (n != n_)
n->unlock();
if (child != n_)
child->unlock();
if (next_child) {
n = p;
child = next_child;
sense = !sense;
} else if (p) {
p->unlock();
break;
} else
break;
}
return insert_marker();
}
} // namespace Masstree
#endif