You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When i use some transformed values 'macrodata.csv' the corresponding error returned:
/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
/home/nikospps/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
/home/nikospps/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
/home/nikospps/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
LinAlgError Traceback (most recent call last)
/tmp/ipykernel_9595/4020703881.py in
----> 1 dq = DataQuality(df=df).evaluate() # create the main class that holds all quality modules
2 # results = dq.evaluate() # run the tests
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/core/data_quality.py in evaluate(self, summary)
165 """
166 results = {
--> 167 name: engine.evaluate(*self._eval_args.get(name,[]), summary=False) for name, engine in self.engines.items()
168 }
169 self._store_warnings() # fetch all warnings from the engines
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/core/data_quality.py in (.0)
165 """
166 results = {
--> 167 name: engine.evaluate(*self._eval_args.get(name,[]), summary=False) for name, engine in self.engines.items()
168 }
169 self._store_warnings() # fetch all warnings from the engines
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py in partial_correlation_matrix(corr_matrix)
134 """Returns the matrix of full order partial correlations.
135 Uses the covariance matrix inversion method."""
--> 136 inv_corr_matrix = np.linalg.pinv(corr_matrix)
137 diag = np.diag(inv_corr_matrix)
138 if np.isnan(diag).any() or (diag <= 0).any():
<array_function internals> in pinv(*args, **kwargs)
~/.conda/envs/testingdata/lib/python3.7/site-packages/numpy/linalg/linalg.py in pinv(a, rcond, hermitian)
2000 return wrap(res)
2001 a = a.conjugate()
-> 2002 u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
2003
2004 # discard small singular values
<array_function internals> in svd(*args, **kwargs)
~/.conda/envs/testingdata/lib/python3.7/site-packages/numpy/linalg/linalg.py in svd(a, full_matrices, compute_uv, hermitian)
1658
1659 signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
-> 1660 u, s, vh = gufunc(a, signature=signature, extobj=extobj)
1661 u = u.astype(result_t, copy=False)
1662 s = s.astype(_realType(result_t), copy=False)
~/.conda/envs/testingdata/lib/python3.7/site-packages/numpy/linalg/linalg.py in _raise_linalgerror_svd_nonconvergence(err, flag)
95
96 def _raise_linalgerror_svd_nonconvergence(err, flag):
---> 97 raise LinAlgError("SVD did not converge")
98
99 def _raise_linalgerror_lstsq(err, flag):
LinAlgError: SVD did not converge
The text was updated successfully, but these errors were encountered:
When i use some transformed values 'macrodata.csv' the corresponding error returned:
/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
/home/nikospps/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
/home/nikospps/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
/home/nikospps/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py:73: RuntimeWarning: invalid value encountered in double_scalars
return np.sqrt(phi_sq_hat / np.min([k_hat - 1, r_hat - 1])) # Note: this is strictly positive
LinAlgError Traceback (most recent call last)
/tmp/ipykernel_9595/4020703881.py in
----> 1 dq = DataQuality(df=df).evaluate() # create the main class that holds all quality modules
2 # results = dq.evaluate() # run the tests
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/core/data_quality.py in evaluate(self, summary)
165 """
166 results = {
--> 167 name: engine.evaluate(*self._eval_args.get(name,[]), summary=False) for name, engine in self.engines.items()
168 }
169 self._store_warnings() # fetch all warnings from the engines
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/core/data_quality.py in (.0)
165 """
166 results = {
--> 167 name: engine.evaluate(*self._eval_args.get(name,[]), summary=False) for name, engine in self.engines.items()
168 }
169 self._store_warnings() # fetch all warnings from the engines
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/data_relations/engine.py in evaluate(self, df, dtypes, label, corr_th, vif_th, p_th, plot, summary)
83 results = {}
84 corr_mat, _ = correlation_matrix(df, self.dtypes, True)
---> 85 p_corr_mat = partial_correlation_matrix(corr_mat)
86 results['Correlations'] = {'Correlation matrix': corr_mat, 'Partial correlation matrix': p_corr_mat}
87 if plot:
~/.conda/envs/testingdata/lib/python3.7/site-packages/ydata_quality/utils/correlations.py in partial_correlation_matrix(corr_matrix)
134 """Returns the matrix of full order partial correlations.
135 Uses the covariance matrix inversion method."""
--> 136 inv_corr_matrix = np.linalg.pinv(corr_matrix)
137 diag = np.diag(inv_corr_matrix)
138 if np.isnan(diag).any() or (diag <= 0).any():
<array_function internals> in pinv(*args, **kwargs)
~/.conda/envs/testingdata/lib/python3.7/site-packages/numpy/linalg/linalg.py in pinv(a, rcond, hermitian)
2000 return wrap(res)
2001 a = a.conjugate()
-> 2002 u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
2003
2004 # discard small singular values
<array_function internals> in svd(*args, **kwargs)
~/.conda/envs/testingdata/lib/python3.7/site-packages/numpy/linalg/linalg.py in svd(a, full_matrices, compute_uv, hermitian)
1658
1659 signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
-> 1660 u, s, vh = gufunc(a, signature=signature, extobj=extobj)
1661 u = u.astype(result_t, copy=False)
1662 s = s.astype(_realType(result_t), copy=False)
~/.conda/envs/testingdata/lib/python3.7/site-packages/numpy/linalg/linalg.py in _raise_linalgerror_svd_nonconvergence(err, flag)
95
96 def _raise_linalgerror_svd_nonconvergence(err, flag):
---> 97 raise LinAlgError("SVD did not converge")
98
99 def _raise_linalgerror_lstsq(err, flag):
LinAlgError: SVD did not converge
The text was updated successfully, but these errors were encountered: