forked from liuh127/NTIRE-2021-Dehazing-Two-branch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (174 loc) · 8.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import time
import argparse
from model import fusion_refine,Discriminator
from train_dataset import dehaze_train_dataset
from test_dataset import dehaze_test_dataset
from val_dataset import dehaze_val_dataset
from torch.utils.data import DataLoader
import os
from torchvision.models import vgg16
from utils_test import to_psnr,to_ssim_skimage
from tensorboardX import SummaryWriter
import torch.nn.functional as F
from perceptual import LossNetwork
from torchvision.utils import save_image as imwrite
from pytorch_msssim import msssim
# --- Parse hyper-parameters train --- #
parser = argparse.ArgumentParser(description='RCAN-Dehaze-teacher')
parser.add_argument('-learning_rate', help='Set the learning rate', default=1e-4, type=float)
parser.add_argument('-train_batch_size', help='Set the training batch size', default=20, type=int)
parser.add_argument('-train_epoch', help='Set the training epoch', default=10000, type=int)
parser.add_argument('--train_dataset', type=str, default='')
parser.add_argument('--data_dir', type=str, default='')
parser.add_argument('--model_save_dir', type=str, default='./output_result')
parser.add_argument('--log_dir', type=str, default=None)
# --- Parse hyper-parameters test --- #
parser.add_argument('--test_dataset', type=str, default='')
parser.add_argument('--predict_result', type=str, default='./output_result/picture/')
parser.add_argument('-test_batch_size', help='Set the testing batch size', default=1, type=int)
parser.add_argument('--vgg_model', default='', type=str, help='load trained model or not')
parser.add_argument('--imagenet_model', default='', type=str, help='load trained model or not')
parser.add_argument('--rcan_model', default='', type=str, help='load trained model or not')
args = parser.parse_args()
# --- train --- #
learning_rate = args.learning_rate
train_batch_size = args.train_batch_size
train_epoch= args.train_epoch
train_dataset=os.path.join(args.data_dir, 'train')
# --- test --- #
test_dataset = os.path.join(args.data_dir, 'test')
val_dataset = os.path.join(args.data_dir, 'val')
predict_result= args.predict_result
test_batch_size=args.test_batch_size
# --- output picture and check point --- #
if not os.path.exists(args.model_save_dir):
os.makedirs(args.model_save_dir)
output_dir=os.path.join(args.model_save_dir,'output_result')
# --- Gpu device --- #
device_ids = [Id for Id in range(torch.cuda.device_count())]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Define the network --- #
MyEnsembleNet = fusion_refine(args.imagenet_model, args.rcan_model)
print('MyEnsembleNet parameters:', sum(param.numel() for param in MyEnsembleNet.parameters()))
DNet = Discriminator()
print('# Discriminator parameters:', sum(param.numel() for param in DNet.parameters()))
# --- Build optimizer --- #
G_optimizer = torch.optim.Adam(MyEnsembleNet.parameters(), lr=0.0001)
scheduler_G = torch.optim.lr_scheduler.MultiStepLR(G_optimizer, milestones=[5000,7000,8000], gamma=0.5)
D_optim = torch.optim.Adam(DNet.parameters(), lr=0.0001)
scheduler_D = torch.optim.lr_scheduler.MultiStepLR(D_optim, milestones=[5000,7000,8000], gamma=0.5)
# --- Load training data --- #
dataset = dehaze_train_dataset(train_dataset)
train_loader = DataLoader(dataset=dataset, batch_size=train_batch_size, shuffle=True)
# --- Load testing data --- #
test_dataset = dehaze_test_dataset(test_dataset)
test_loader = DataLoader(dataset=test_dataset, batch_size=test_batch_size, shuffle=False, num_workers=0)
val_dataset = dehaze_val_dataset(val_dataset)
val_loader = DataLoader(dataset=val_dataset, batch_size=1, shuffle=False, num_workers=0)
# --- Multi-GPU --- #
MyEnsembleNet = MyEnsembleNet.to(device)
MyEnsembleNet= torch.nn.DataParallel(MyEnsembleNet, device_ids=device_ids)
DNet = DNet.to(device)
DNet= torch.nn.DataParallel(DNet, device_ids=device_ids)
writer = SummaryWriter(os.path.join(args.model_save_dir, 'tensorboard'))
# --- Define the perceptual loss network --- #
vgg_model = vgg16(pretrained=True)
# vgg_model.load_state_dict(torch.load(os.path.join(args.vgg_model , 'vgg16.pth')))
vgg_model = vgg_model.features[:16].to(device)
for param in vgg_model.parameters():
param.requires_grad = False
loss_network = LossNetwork(vgg_model)
loss_network.eval()
msssim_loss = msssim
# '''server vgg'''
# vgg_model = vgg16(pretrained=True).features[:16]
# vgg_model = vgg_model.to(device)
# for param in vgg_model.parameters():
# param.requires_grad = False
# loss_network = LossNetwork(vgg_model)
# loss_network.eval()
# --- Load the network weight --- #
try:
MyEnsembleNet.load_state_dict(torch.load(os.path.join(args.teacher_model , 'epoch100000.pkl')))
print('--- weight loaded ---')
except:
print('--- no weight loaded ---')
# --- Strat training --- #
iteration = 0
for epoch in range(train_epoch):
start_time = time.time()
scheduler_G.step()
scheduler_D.step()
MyEnsembleNet.train()
DNet.train()
print(epoch)
for batch_idx, (hazy, clean) in enumerate(train_loader):
# print(batch_idx)
iteration +=1
hazy = hazy.to(device)
clean = clean.to(device)
output= MyEnsembleNet(hazy)
DNet.zero_grad()
real_out = DNet(clean).mean()
fake_out = DNet(output).mean()
D_loss = 1 - real_out + fake_out
# no more forward
D_loss.backward(retain_graph=True)
MyEnsembleNet.zero_grad()
adversarial_loss = torch.mean(1 - fake_out)
smooth_loss_l1 = F.smooth_l1_loss(output, clean)
perceptual_loss = loss_network(output, clean)
msssim_loss_ = -msssim_loss(output, clean, normalize=True)
total_loss = smooth_loss_l1+0.01 * perceptual_loss+ 0.0005 * adversarial_loss+ 0.5*msssim_loss_
total_loss.backward()
D_optim.step()
G_optimizer.step()
# if iteration % 2 == 0:
# frame_debug = torch.cat(
# (hazy, output, clean), dim=0)
# writer.add_images('train_debug_img', frame_debug, iteration)
writer.add_scalars('training', {'training total loss': total_loss.item()
}, iteration)
writer.add_scalars('training_img', {'img loss_l1': smooth_loss_l1.item(),
'perceptual': perceptual_loss.item(),
'msssim':msssim_loss_.item()
}, iteration)
writer.add_scalars('GAN_training', {
'd_loss':D_loss.item(),
'd_score':real_out.item(),
'g_score':fake_out.item()
}, iteration
)
if epoch % 5 == 0:
print('we are testing on epoch: ' + str(epoch))
with torch.no_grad():
psnr_list = []
ssim_list = []
recon_psnr_list = []
recon_ssim_list = []
MyEnsembleNet.eval()
for batch_idx, (hazy_up,hazy_down,hazy, clean) in enumerate(test_loader):
# hazy_up = hazy_up.to(device)
# hazy_down=hazy_down.to(device)
clean = clean.to(device)
hazy = hazy.to(device)
frame_out = MyEnsembleNet(hazy)
# frame_out_up = MyEnsembleNet(hazy_up)
# frame_out_down = MyEnsembleNet(hazy_down)
# frame_out=(torch.cat([frame_out_up.permute(0,2,3,1), frame_out_down[:,:,80:640,:].permute(0,2,3,1)], 1)).permute(0,3,1,2)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# imwrite(frame_out, output_dir +'/' +str(batch_idx) + '.png', range=(0, 1))
psnr_list.extend(to_psnr(frame_out, clean))
ssim_list.extend(to_ssim_skimage(frame_out, clean))
avr_psnr = sum(psnr_list) / len(psnr_list)
avr_ssim = sum(ssim_list) / len(ssim_list)
print(epoch,'dehazed', avr_psnr, avr_ssim)
frame_debug = torch.cat((frame_out,clean), dim =0)
writer.add_images('my_image_batch', frame_debug, epoch)
writer.add_scalars('testing', {'testing psnr':avr_psnr,
'testing ssim': avr_ssim
}, epoch)
torch.save(MyEnsembleNet.state_dict(), os.path.join(args.model_save_dir,'epoch'+ str(epoch) + '.pkl'))
writer.close()