-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
34 lines (25 loc) · 997 Bytes
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from scipy import optimize
class trainer(object):
def __init__(self, N):
# Make Local reference to network:
self.N = N
def callbackF(self, params):
self.N.setParams(params)
self.J.append(self.N.costFunction(self.X, self.y))
def costFunctionWrapper(self, params, X, y):
self.N.setParams(params)
cost = self.N.costFunction(X, y)
grad = self.N.computeGradients(X, y)
return cost, grad
def train(self, X, y):
# Make an internal variable for the callback function:
self.X = X
self.y = y
# Make empty list to store costs:
self.J = []
params0 = self.N.getParams()
options = {'maxiter': 200, 'disp': True}
_res = optimize.minimize(self.costFunctionWrapper, params0, jac=True, method='BFGS',
args=(X, y), options=options, callback=self.callbackF)
self.N.setParams(_res.x)
self.optimizationResults = _res