-
Notifications
You must be signed in to change notification settings - Fork 1
/
egbib.bib
executable file
·403 lines (355 loc) · 12.1 KB
/
egbib.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
@inproceedings{sohn2013learning,
title={Learning and selecting features jointly with point-wise gated $\{$B$\}$ oltzmann machines},
author={Sohn, Kihyuk and Zhou, Guanyu and Lee, Chansoo and Lee, Honglak},
booktitle={Proceedings of The 30th International Conference on Machine Learning},
pages={217--225},
year={2013}
}
1. Neuroscience evidence
@article{Cichy2014Resolving,
author = {Cichy, Radoslaw Martin and Pantazis, Dimitrios and Oliva, Aude},
title = {{Resolving human object recognition in space and time}},
journal = {Nature Publishing Group},
year = {2014},
volume = {17},
number = {3},
pages = {455--462},
month = jan
}
@article{Rust:2010if,
author = {Rust, N C and DiCarlo, J J},
title = {{Selectivity and Tolerance ("Invariance") Both Increase as Visual Information Propagates from Cortical Area V4 to IT}},
journal = {Journal of Neuroscience},
year = {2010},
volume = {30},
number = {39},
pages = {12978--12995},
month = sep
}
@article{Kruger2013Deep,
author = {Kruger, Norbert and Janssen, Peter and Kalkan, Sinan and Lappe, Markus and Leonardis, Ales and Piater, Justus and Rodriguez-Sanchez, Antonio J and Wiskott, Laurenz},
title = {{Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?}},
`journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
`year = {2013},
volume = {35},
number = {8},
pages = {1847--1871}
}
@article{lee2003hierarchical,
title={Hierarchical Bayesian inference in the visual cortex},
author={Lee, Tai Sing and Mumford, David},
journal={JOSA A},
volume={20},
number={7},
pages={1434--1448},
year={2003},
publisher={Optical Society of America}
}
Biased Competition Theory
@article{beck2009top,
title={Top-down and bottom-up mechanisms in biasing competition in the human brain},
author={Beck, Diane M and Kastner, Sabine},
journal={Vision research},
volume={49},
number={10},
pages={1154--1165},
year={2009},
publisher={Elsevier}
}
@article{desimone1998visual,
title={Visual attention mediated by biased competition in extrastriate visual cortex},
author={Desimone, Robert},
journal={Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences},
volume={353},
number={1373},
pages={1245--1255},
year={1998},
publisher={The Royal Society}
}
@article{desimone1995neural,
title={Neural mechanisms of selective visual attention},
author={Desimone, Robert and Duncan, John},
journal={Annual review of neuroscience},
volume={18},
number={1},
pages={193--222},
year={1995}
}
=====================================
2. Inspiration of deep neural networks
@article{Szegedy:2013vw,
author = {Szegedy, Christian and Zaremba, Wojciech and Sutskever, Ilya and Bruna, Joan and Erhan, Dumitru and Goodfellow, Ian and Fergus, Rob},
title = {{Intriguing properties of neural networks}},
journal = {arXiv.org},
year = {2013},
eprint = {1312.6199v4},
eprinttype = {arxiv},
eprintclass = {cs.CV},
month = dec
}
@incollection{zeiler2014visualizing,
title={Visualizing and understanding convolutional networks},
author={Zeiler, Matthew D and Fergus, Rob},
booktitle={Computer Vision--ECCV 2014},
pages={818--833},
year={2014},
publisher={Springer}
}
@article{Zeiler:2011hy,
author = {Zeiler, M D and Taylor, G W and Fergus, R},
title = {{Adaptive deconvolutional networks for mid and high level feature learning}},
journal = {Computer Vision (ICCV {\ldots}},
year = {2011},
pages = {2018--2025}
}
VGG visualization paper
@article{simonyan2013deep,
title={Deep inside convolutional networks: Visualising image classification models and saliency maps},
author={Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
journal={arXiv preprint arXiv:1312.6034},
year={2013}
}
@inproceedings{le2013building,
title={Building high-level features using large scale unsupervised learning},
author={Le, Quoc V},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on},
pages={8595--8598},
year={2013},
organization={IEEE}
}
====================================
3. Convolutional Neural Networks
LeCun's original paper on CNN
@article{lecun1998gradient,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={IEEE}
}
@article{jia2014caffe,
Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
Journal = {arXiv preprint arXiv:1408.5093},
Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
Year = {2014}
}
@booklet{Krizhevsky2012ImageNet,
title = {{ImageNet classification with deep convolutional neural networks}},
author = {Krizhevsky, A and Sutskever, I and Hinton, G E},
year = {2012}
}
Two keypoints in the VGG paper: 1) Depth of neural networks 2) no normalization layers
@article{Simonyan2014Very,
author = {Simonyan, Karen and Zisserman, Andrew},
title = {{Very Deep Convolutional Networks for Large-Scale Image Recognition}},
journal = {arXiv.org},
year = {2014},
eprint = {1409.1556v1},
eprinttype = {arxiv},
eprintclass = {cs.CV},
month = sep
}
Google's GoogLeNet
@article{Szegedy2014Going,
author = {Szegedy, Christian and Liu, Wei and Jia, Yangqing and Sermanet, Pierre and Reed, Scott and Anguelov, Dragomir and Erhan, Dumitru and Vanhoucke, Vincent and Rabinovich, Andrew},
title = {{Going Deeper with Convolutions}},
journal = {arXiv.org},
year = {2014},
eprint = {1409.4842v1},
eprinttype = {arxiv},
eprintclass = {cs.CV},
month = sep
}
NIN from NUS
@article{lin2013network,
title={Network in network},
author={Lin, Min and Chen, Qiang and Yan, Shuicheng},
journal={arXiv preprint arXiv:1312.4400},
year={2013}
}
DBM
@inproceedings{salakhutdinov2009deep,
title={Deep boltzmann machines},
author={Salakhutdinov, Ruslan and Hinton, Geoffrey E},
booktitle={International Conference on Artificial Intelligence and Statistics},
pages={448--455},
year={2009}
}
BatchNormalization from Google
@article{ioffe2015batch,
title={Batch normalization: Accelerating deep network training by reducing internal covariate shift},
author={Ioffe, Sergey and Szegedy, Christian},
journal={arXiv preprint arXiv:1502.03167},
year={2015}
}
PRelu
@article{he2015delving,
title={Delving deep into rectifiers: Surpassing human-level performance on imagenet classification},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
journal={arXiv preprint arXiv:1502.01852},
year={2015}
}
Dropout
@article{srivastava2014dropout,
title={Dropout: A simple way to prevent neural networks from overfitting},
author={Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
journal={The Journal of Machine Learning Research},
volume={15},
number={1},
pages={1929--1958},
year={2014},
publisher={JMLR. org}
}
====================================
4. Others:
DPM:˜
@article{Felzenszwalb2010Object,
author = {Felzenszwalb, P F and Girshick, R B and McAllester, D and Ramanan, D},
title = {{Object Detection with Discriminatively Trained Part-Based Models}},
journal = {Pattern Analysis and Machine Intelligence, IEEE Transactions on},
year = {2010},
volume = {32},
number = {9},
pages = {1627--1645}
}
ImageNet:
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on},
pages={248--255},
year={2009},
organization={IEEE}
}
Representation Learning by Bengio
@article{bengio2013representation,
title={Representation learning: A review and new perspectives},
author={Bengio, Yoshua and Courville, Aaron and Vincent, Pascal},
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on},
volume={35},
number={8},
pages={1798--1828},
year={2013},
publisher={IEEE}
}
====================================
5. Feedback network
Jürgen Schmidhuber's feedback network implemented in rnn
@article{Stollenga:2014tl,
author = {Stollenga, Marijn and Masci, Jonathan and Gomez, Faustino and Schmidhuber, Juergen},
title = {{Deep Networks with Internal Selective Attention through Feedback Connections}},
journal = {arXiv.org},
year = {2014},
eprint = {1407.3068v1},
eprinttype = {arxiv},
eprintclass = {cs.CV},
month = jul
}
@article{sermanet2014attention,
title={Attention for Fine-Grained Categorization},
author={Sermanet, Pierre and Frome, Andrea and Real, Esteban},
journal={arXiv preprint arXiv:1412.7054},
year={2014}
}
@inproceedings{wang2014attentional,
title={Attentional Neural Network: Feature Selection Using Cognitive Feedback},
author={Wang, Qian and Zhang, Jiaxing and Song, Sen and Zhang, Zheng},
booktitle={Advances in Neural Information Processing Systems},
pages={2033--2041},
year={2014}
}
@article{Mnih:2014ti,
author = {Mnih, Volodymyr and Heess, Nicolas and Graves, Alex and Kavukcuoglu, Koray},
title = {{Recurrent Models of Visual Attention}},
journal = {NIPS},
year = {2014},
month = jun
}
DRAW paper from Google DeepMind
@article{gregor2015draw,
title={DRAW: A Recurrent Neural Network For Image Generation},
author={Gregor, Karol and Danihelka, Ivo and Graves, Alex and Wierstra, Daan},
journal={arXiv preprint arXiv:1502.04623},
year={2015}
}
====================================
6. Detection & Localization
@inproceedings{girshick2014rich,
title={Rich feature hierarchies for accurate object detection and semantic segmentation},
author={Girshick, Ross and Donahue, Jeff and Darrell, Trevor and Malik, Jitendra},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
pages={580--587},
year={2014},
organization={IEEE}
}
@inproceedings{erhan2014scalable,
title={Scalable object detection using deep neural networks},
author={Erhan, Dumitru and Szegedy, Christian and Toshev, Alexander and Anguelov, Dragomir},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
pages={2155--2162},
year={2014},
organization={IEEE}
}
Selective Search: region proposals
@article{uijlings2013selective,
title={Selective search for object recognition},
author={Uijlings, Jasper RR and van de Sande, Koen EA and Gevers, Theo and Smeulders, Arnold WM},
journal={International journal of computer vision},
volume={104},
number={2},
pages={154--171},
year={2013},
publisher={Springer}
}
@inproceedings{yuri2001interactive,
title={Interactive graph cuts for optimal boundary and region segmentation of objects in ND images},
author={Yuri, B and Marie-Pierre, J},
booktitle={IEEEInternational Conference on Computer Vision. USA: IEEE},
volume={112},
year={2001}
}
====================================
7. Recurrent and LSTM
LSTM
@article{hochreiter1997long,
title={Long short-term memory},
author={Hochreiter, Sepp and Schmidhuber, J{\"u}rgen},
journal={Neural computation},
volume={9},
number={8},
pages={1735--1780},
year={1997},
publisher={MIT Press}
}
@article{chung2015gated,
title={Gated Feedback Recurrent Neural Networks},
author={Chung, Junyoung and Gulcehre, Caglar and Cho, Kyunghyun and Bengio, Yoshua},
journal={arXiv preprint arXiv:1502.02367},
year={2015}
}
====================================
8. Max Pooling and invariance
Poggio's max pooling
@article{riesenhuber1999hierarchical,
title={Hierarchical models of object recognition in cortex},
author={Riesenhuber, Maximilian and Poggio, Tomaso},
journal={Nature neuroscience},
volume={2},
number={11},
pages={1019--1025},
year={1999},
publisher={Nature Publishing Group}
}
Cresceptron: The very early implementation of max pooling
@inproceedings{weng1992cresceptron,
title={Cresceptron: a self-organizing neural network which grows adaptively},
author={Weng, Juyang and Ahuja, Narendra and Huang, Thomas S},
booktitle={Neural Networks, 1992. IJCNN., International Joint Conference on},
volume={1},
pages={576--581},
year={1992},
organization={IEEE}
}