diff --git a/src/frontends/pytorch/src/op/addmm.cpp b/src/frontends/pytorch/src/op/addmm.cpp index 4ecfd403afc6dd..a61898aadbdbdb 100644 --- a/src/frontends/pytorch/src/op/addmm.cpp +++ b/src/frontends/pytorch/src/op/addmm.cpp @@ -73,17 +73,8 @@ OutputVector translate_conv1d_ext(const NodeContext& context) { auto bias = context.get_input(2); bias = context.mark_node(std::make_shared(bias, x)); - auto neg_one = context.mark_node(v0::Constant::create(element::i32, Shape{1}, {-1})); - auto zero = context.mark_node(v0::Constant::create(element::i32, Shape{1}, {0})); - auto shape_x = context.mark_node(std::make_shared(x, element::i32)); - auto x_last_dim = context.mark_node(std::make_shared(shape_x, neg_one, zero)); - auto x_new_shape = context.mark_node(std::make_shared(OutputVector{neg_one, x_last_dim}, 0)); - - auto x_new = context.mark_node(std::make_shared(x, x_new_shape, false)); - auto mm = context.mark_node(std::make_shared(x_new, weight)); - auto addmm = context.mark_node(std::make_shared(bias, mm)); - auto size_out = context.mark_node(std::make_shared(shape_x, neg_one, neg_one, zero)); - return {context.mark_node(std::make_shared(addmm, size_out, false))}; + auto mm = context.mark_node(std::make_shared(x, weight)); + return {context.mark_node(std::make_shared(mm, bias))}; }; } // namespace op diff --git a/tests/model_hub_tests/pytorch/test_llm.py b/tests/model_hub_tests/pytorch/test_llm.py index d48ac60e24db71..9acf8e2100c520 100644 --- a/tests/model_hub_tests/pytorch/test_llm.py +++ b/tests/model_hub_tests/pytorch/test_llm.py @@ -100,13 +100,16 @@ def load_model(self, name, type): config = {} model_kwargs = {"torchscript": True, "trust_remote_code": True} is_gptq = is_gptq_model(config) + is_gpt2 = name == "openai-community/gpt2" + if is_gptq: self.cuda_available, self.gptq_postinit = patch_gptq() model_kwargs["torch_dtype"] = torch.float32 self.ov_config = {"DYNAMIC_QUANTIZATION_GROUP_SIZE": "0"} + elif is_gpt2: + model_kwargs["torch_dtype"] = torch.float16 else: model_kwargs["torch_dtype"] = "auto" - pass t = AutoTokenizer.from_pretrained(name, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained(name, **model_kwargs) @@ -114,7 +117,7 @@ def load_model(self, name, type): model = self.model else: assert self.model.config.torch_dtype in [ - torch.float16, torch.bfloat16] + torch.float16, torch.bfloat16] or is_gpt2 model = copy.deepcopy(self.model).float() example = t("Some input text to verify that model works.", @@ -188,6 +191,7 @@ def get_pkv(model, tokenizer): @pytest.mark.parametrize("type,name", [ ("opt_gptq", "katuni4ka/opt-125m-gptq"), ("llama", "TinyLlama/TinyLlama-1.1B-Chat-v1.0"), + ("gpt2", "openai-community/gpt2") ]) @pytest.mark.precommit @pytest.mark.nightly