forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposition_embedding_test.py
88 lines (71 loc) · 3.51 KB
/
position_embedding_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Keras-based positional embedding layer."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling.layers import position_embedding
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class RelativePositionEmbeddingLayerTest(keras_parameterized.TestCase):
def test_relative_tensor_input(self):
hidden_size = 8
test_layer = position_embedding.RelativePositionEmbedding(
hidden_size=hidden_size)
# create a 3-dimensional input for test_layer to infer length as 1.
input_tensor = tf.constant([[[0] * hidden_size]])
output_tensor = test_layer(input_tensor)
# expected output is the theoretical result of the input based on
# sine cosine relative position embedding formula.
expected_output_tensor = tf.constant([[0, 0, 0, 0, 1, 1, 1, 1]])
self.assertAllEqual(output_tensor, expected_output_tensor)
def test_relative_length_input(self):
hidden_size = 8
# When we do not have tensor as input, we explicitly specify length
# value when initializing test_layer.
test_layer = position_embedding.RelativePositionEmbedding(
hidden_size=hidden_size)
input_tensor = None
output_tensor = test_layer(input_tensor, length=1)
# expected output is the theoretical result of the input based on
# sine cosine relative position embedding formula.
expected_output_tensor = tf.constant([[0, 0, 0, 0, 1, 1, 1, 1]])
self.assertAllEqual(output_tensor, expected_output_tensor)
@keras_parameterized.run_all_keras_modes
class RelativePositionBiasTest(keras_parameterized.TestCase):
@parameterized.named_parameters(("bidirectional", True),
("unidirectional", False))
def test_relative_position_bias(self, bidirectional):
query = tf.zeros((4, 4, 2))
key = tf.zeros((4, 2, 2))
l = position_embedding.RelativePositionBias(
num_heads=3,
bidirectional=bidirectional,
name="foo")
self.assertEqual(l(query, key).shape, (4, 3, 4, 2))
self.assertLen(l.trainable_variables, 1)
self.assertEqual(l.trainable_variables[0].name, "foo/rel_embedding:0")
def test_relative_position_bucket(self):
context_position = tf.range(3)[:, None]
memory_position = tf.range(2)[None, :]
relative_position = memory_position - context_position
outputs = position_embedding._relative_position_bucket(relative_position)
self.assertAllEqual(outputs.numpy(), np.array([[0, 17], [1, 0], [2, 1]]))
outputs = position_embedding._relative_position_bucket(
relative_position, bidirectional=False)
self.assertAllEqual(outputs.numpy(), np.array([[0, 0], [1, 0], [2, 1]]))
if __name__ == "__main__":
tf.test.main()