forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcls_head_test.py
153 lines (125 loc) · 5.91 KB
/
cls_head_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for cls_head."""
from absl.testing import parameterized
import tensorflow as tf
from official.nlp.modeling.layers import cls_head
class ClassificationHeadTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("no_pooler_layer", 0, 2),
("has_pooler_layer", 5, 4))
def test_pooler_layer(self, inner_dim, num_weights_expected):
test_layer = cls_head.ClassificationHead(inner_dim=inner_dim, num_classes=2)
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32)
_ = test_layer(features)
num_weights_observed = len(test_layer.get_weights())
self.assertEqual(num_weights_observed, num_weights_expected)
def test_layer_invocation(self):
test_layer = cls_head.ClassificationHead(inner_dim=5, num_classes=2)
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32)
output = test_layer(features)
self.assertAllClose(output, [[0., 0.], [0., 0.]])
self.assertSameElements(test_layer.checkpoint_items.keys(),
["pooler_dense"])
def test_layer_serialization(self):
layer = cls_head.ClassificationHead(10, 2)
new_layer = cls_head.ClassificationHead.from_config(layer.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(layer.get_config(), new_layer.get_config())
class MultiClsHeadsTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("no_pooler_layer", 0, 4),
("has_pooler_layer", 5, 6))
def test_pooler_layer(self, inner_dim, num_weights_expected):
cls_list = [("foo", 2), ("bar", 3)]
test_layer = cls_head.MultiClsHeads(inner_dim=inner_dim, cls_list=cls_list)
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32)
_ = test_layer(features)
num_weights_observed = len(test_layer.get_weights())
self.assertEqual(num_weights_observed, num_weights_expected)
def test_layer_invocation(self):
cls_list = [("foo", 2), ("bar", 3)]
test_layer = cls_head.MultiClsHeads(inner_dim=5, cls_list=cls_list)
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32)
outputs = test_layer(features)
self.assertAllClose(outputs["foo"], [[0., 0.], [0., 0.]])
self.assertAllClose(outputs["bar"], [[0., 0., 0.], [0., 0., 0.]])
self.assertSameElements(test_layer.checkpoint_items.keys(),
["pooler_dense", "foo", "bar"])
def test_layer_serialization(self):
cls_list = [("foo", 2), ("bar", 3)]
test_layer = cls_head.MultiClsHeads(inner_dim=5, cls_list=cls_list)
new_layer = cls_head.MultiClsHeads.from_config(test_layer.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(test_layer.get_config(), new_layer.get_config())
class GaussianProcessClassificationHead(tf.test.TestCase,
parameterized.TestCase):
def setUp(self):
super().setUp()
self.spec_norm_kwargs = dict(norm_multiplier=1.,)
self.gp_layer_kwargs = dict(num_inducing=512)
@parameterized.named_parameters(("no_pooler_layer", 0, 7),
("has_pooler_layer", 5, 11))
def test_pooler_layer(self, inner_dim, num_weights_expected):
test_layer = cls_head.GaussianProcessClassificationHead(
inner_dim=inner_dim,
num_classes=2,
use_spec_norm=True,
use_gp_layer=True,
initializer="zeros",
**self.spec_norm_kwargs,
**self.gp_layer_kwargs)
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32)
_ = test_layer(features)
num_weights_observed = len(test_layer.get_weights())
self.assertEqual(num_weights_observed, num_weights_expected)
def test_layer_invocation(self):
test_layer = cls_head.GaussianProcessClassificationHead(
inner_dim=5,
num_classes=2,
use_spec_norm=True,
use_gp_layer=True,
initializer="zeros",
**self.spec_norm_kwargs,
**self.gp_layer_kwargs)
features = tf.zeros(shape=(2, 10, 10), dtype=tf.float32)
output, _ = test_layer(features)
self.assertAllClose(output, [[0., 0.], [0., 0.]])
self.assertSameElements(test_layer.checkpoint_items.keys(),
["pooler_dense"])
def test_layer_serialization(self):
layer = cls_head.GaussianProcessClassificationHead(
inner_dim=5,
num_classes=2,
use_spec_norm=True,
use_gp_layer=True,
**self.spec_norm_kwargs,
**self.gp_layer_kwargs)
new_layer = cls_head.GaussianProcessClassificationHead.from_config(
layer.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(layer.get_config(), new_layer.get_config())
def test_sngp_kwargs_serialization(self):
"""Tests if SNGP-specific kwargs are added during serialization."""
layer = cls_head.GaussianProcessClassificationHead(
inner_dim=5,
num_classes=2,
use_spec_norm=True,
use_gp_layer=True,
**self.spec_norm_kwargs,
**self.gp_layer_kwargs)
layer_config = layer.get_config()
# The config value should equal to those defined in setUp().
self.assertEqual(layer_config["norm_multiplier"], 1.)
self.assertEqual(layer_config["num_inducing"], 512)
if __name__ == "__main__":
tf.test.main()