-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
94 lines (73 loc) · 3.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import scipy.sparse as sp
import torch
from sklearn.model_selection import train_test_split
def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
enumerate(classes)}
labels_onehot = np.array(list(map(classes_dict.get, labels)),
dtype=np.int32)
return labels_onehot
def normalization(adjacency):
"""计算 L=D^-0.5 * (A+I) * D^-0.5"""
adjacency += sp.eye(adjacency.shape[0]) # add self loop
degree = np.array(adjacency.sum(1))
d_hat = sp.diags(np.power(degree, -0.5).flatten())
return d_hat.dot(adjacency).dot(d_hat).tocoo()
def load_data(args,path="./data/user_data/", dataset="all_feat_with_label"):
print('Loading {} dataset...'.format(dataset))
# read feature
idx_features_labels = np.genfromtxt("{}{}.csv".format(path, dataset),
dtype=np.dtype(str), delimiter=',', skip_header=1)
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
labels = np.array(idx_features_labels[:, -1],dtype=np.int32)
# build graph
idx = np.array(idx_features_labels[:, 0], dtype=np.object)
if args.edge==1:
adj = sp.load_npz(path+'node_adj_sparse.npz')
else:
adj = sp.load_npz(path+'node_adj_sparse_no_edge.npz')
adj = adj.toarray()
adj=sp.coo_matrix(adj)
# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
features = normalize(features)
adj = normalize(adj + sp.eye(adj.shape[0]))
idx_index=range(len(idx))
X_train_val, idx_test, y_train_val, y_test = \
train_test_split(idx_index, labels, stratify=labels, test_size=1 - args.train_size-args.val_size,
random_state=48, shuffle=True)
idx_train, idx_val, y_train, y_val = train_test_split(X_train_val, y_train_val,
stratify=y_train_val,
train_size=args.train_size/(args.train_size+args.val_size),
random_state=48,
shuffle=True)
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(labels)
adj = sparse_mx_to_torch_sparse_tensor(adj)
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
return adj, features, labels, idx_train, idx_val, idx_test
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)