ZH-CLIP: A Chinese CLIP Model
You can download ZH-CLIP model from 🤗 thu-ml/zh-clip-vit-roberta-large-patch14 . The model structure is shown below:
COCO-CN Retrieval (Official Test Set):
Model
Text-to-Image
Image-to-Text
R@1
R@5
R@10
Mean
R@1
R@5
R@10
Mean
Clip-Chinese
22.60
50.04
65.24
45.96
22.8
49.8
64.1
45.57
mclip
56.51
83.57
90.79
76.95
59.9
87.3
94.1
80.43
Taiyi-CLIP
52.52
81.10
89.93
74.52
45.80
75.80
88.10
69.90
CN-CLIP
64.10
88.79
94.40
82.43
61.00
84.40
93.10
79.5
altclip-xlmr-l
62.87
87.18
94.01
81.35
63.3
88.3
95.3
82.3
ZH-CLIP
68.00
89.46
95.44
84.30
68.50
90.10
96.50
85.03
Flickr30K-CN Retrieval (Official Test Set):
Model
Text-to-Image
Image-to-Text
R@1
R@5
R@10
Mean
R@1
R@5
R@10
Mean
Clip-Chinese
17.76
40.34
51.88
36.66
30.4
55.30
67.10
50.93
mclip
62.3
86.42
92.58
80.43
84.4
97.3
98.9
93.53
Taiyi-CLIP
53.5
80.5
87.24
73.75
65.4
90.6
95.7
83.9
CN-CLIP
67.98
89.54
94.46
83.99
81.2
96.6
98.2
92.0
altclip-xlmr-l
69.16
89.94
94.5
84.53
85.1
97.7
99.2
94.0
ZH-CLIP
69.64
90.14
94.3
84.69
86.6
97.6
98.8
94.33
Muge Text-to-Image Retrieval (Official Validation Set):
Model
Text-to-Image
R@1
R@5
R@10
Mean
Clip-Chinese
15.06
34.96
46.21
32.08
mclip
22.34
41.15
50.26
37.92
Taiyi-CLIP
42.09
67.75
77.21
62.35
cn-clip
56.25
79.87
86.50
74.21
altclip-xlmr-l
29.69
49.92
58.87
46.16
ZH-CLIP
56.75
79.75
86.66
74.38
Zero-shot Image Classification:
Model
Zero-shot Classification (ACC1)
CIFAR10
CIFAR100
DTD
EuroSAT
FER
FGVC
KITTI
MNIST
PC
VOC
ImageNet
Clip-Chinese
86.85
44.21
18.40
34.86
14.21
3.87
32.63
14.37
52.49
67.73
22.22
mclip
92.88
65.54
29.57
46.76
41.18
7.20
23.21
52.80
51.64
77.56
42.99
Taiyi-CLIP
95.62
73.30
40.69
61.62
36.22
13.98
41.21
73.91
50.02
75.28
49.82
CN-CLIP
94.75
75.04
44.73
52.34
48.57
20.55
20.11
61.99
62.59
79.12
53.40
Altclip-xlmr-l
95.49
77.29
42.07
56.96
51.52
26.85
24.89
65.68
50.02
77.99
59.21
ZH-CLIP
97.08
80.73
47.66
51.58
48.48
20.73
20.11
61.94
62.31
78.07
56.87
python >= 3.9
pip install -r requirements.txt
from PIL import Image
import requests
from models .zhclip import ZhCLIPProcessor , ZhCLIPModel
version = 'thu-ml/zh-clip-vit-roberta-large-patch14'
model = ZhCLIPModel .from_pretrained (version )
processor = ZhCLIPProcessor .from_pretrained (version )
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image .open (requests .get (url , stream = True ).raw )
inputs = processor (text = ["一只猫" , "一只狗" ], images = image , return_tensors = "pt" , padding = True )
outputs = model (** inputs )
image_features = outputs .image_features
text_features = outputs .text_features
text_probs = (image_features @ text_features .T ).softmax (dim = - 1 )
Other Chinese CLIP Models
In addition, to compare the effectiveness of different methods, the inference methods of other Chinese CLIP models have been integrated. For the convenience of use, the inference code has also been made public, and please contact us if there is any infringement. The code only implements models at the same level as clip-vit-large-patch14, but it may be adapted for the use of more different versions of models in the future.
Usage in inference.py