forked from thunlp/MatPlotAgent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathone_time_generate_COT.py
70 lines (55 loc) · 2.85 KB
/
one_time_generate_COT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import json
import re
from tqdm import tqdm
from agents.query_expansion_agent import QueryExpansionAgent
from agents.plot_agent import PlotAgent
from agents.visual_refine_agent import VisualRefineAgent
import logging
import os
from agents.utils import is_run_code_success, run_code, get_code
import argparse
def mainworkflow(expert_instruction, simple_instruction, workspace='./workspace',model_type='gpt-3.5-turbo',no_sysprompt=False):
config = {'workspace': workspace}
# GPT-3.5-turbo Plot Agent
# Initial plotting
action_agent = PlotAgent(config, simple_instruction)
logging.info('=========Plotting=========')
novice_35_log, novice_35_code = action_agent.run_one_time_zero_shot_COT(model_type, 'novice.png',no_sysprompt=no_sysprompt)
logging.info(novice_35_log)
logging.info('=========Original Code=========')
logging.info(novice_35_code)
def check_refined_code_executable(refined_code, model_type, query_type, workspace):
file_name = f'code_action_{model_type}_{query_type}_refined.py'
with open(os.path.join(workspace, file_name), 'w') as f1:
f1.write(refined_code)
log = run_code(workspace, file_name)
return is_run_code_success(log)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--workspace', type=str, default='./workspace')
parser.add_argument('--model_type', type=str, default='gpt-3.5-turbo')
parser.add_argument('--no_sysprompt',action='store_true')
args = parser.parse_args()
workspace_base = args.workspace
data_path = '/home/zhoupeng/project/LLM/agent/plotagent/benchmark/newPlotAgent/plot-agent/benchmark_data/'
# open the json file
data = json.load(open(f'{data_path}/benchmark_instructions.json'))
for item in tqdm(data):
novice_instruction = item['simple_instruction']
expert_instruction = item['expert_instruction']
example_id = item['id']
directory_path = f'{workspace_base}/example_{example_id}'
# Check if the directory already exists
if not os.path.exists(directory_path):
# If it doesn't exist, create the directory
os.mkdir(directory_path)
print(f"Directory '{directory_path}' created successfully.")
input_path = f'{data_path}/data/{example_id}'
if os.path.exists(input_path):
#全部copy到f"Directory '{directory_path}'
os.system(f'cp -r {input_path}/* {directory_path}')
else:
print(f"Directory '{directory_path}' already exists.")
continue
logging.basicConfig(level=logging.INFO, filename=f'{directory_path}/workflow.log', filemode='w', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
mainworkflow(expert_instruction,novice_instruction, workspace=directory_path,model_type=args.model_type,no_sysprompt=args.no_sysprompt)