-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathchat_demo.py
executable file
·117 lines (102 loc) · 4.64 KB
/
chat_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import torch
import gradio as gr
import json
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer,GenerationConfig
tokenizer, model = None, None
system_tpl = None
exec_tpl = None
css = """
.message.user{
border-color: #BFB0FA !important;
background: #EEEAFF !important;
}
.message.bot{
border-color: #CDCDCD !important;
background: #F8F8F8 !important;
}
"""
def init_model(args):
global tokenizer, model
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, truncation_side="left", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(args.model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True, device_map='auto')
model.generation_config = GenerationConfig.from_pretrained(args.model_path)
model = model.eval()
def chat(message, history, system_text, exec_text, request: gr.Request):
global tokenizer, model
history = history or []
if system_text is not None and system_text != "" and len(history) == 0:
history.append({"role": "system", "content": system_text})
if exec_text is not None and exec_text != "":
history.append({"role": "exec", "content": exec_text})
else:
history.append({"role": "user", "content": message})
# init
history.append({"role": "assistant", "content": ""})
utter_history = []
start_index = 1 if len(history) % 2 == 1 else 0
for i in range(start_index, len(history), 2):
utter_history.append([history[i]["content"], history[i+1]["content"]])
# chat with stream
for next_text in model.chat(tokenizer, history[:-1], stream=True):
utter_history[-1][1] += next_text
history[-1]["content"] += next_text
if torch.backends.mps.is_available():
torch.mps.empty_cache()
yield utter_history, history
# log
current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f'{current_time} request_ip:{request.client.host}\nquery: {message}\nhistory: {json.dumps(history, ensure_ascii=False)}\nanswer: {json.dumps(utter_history[-1][1], ensure_ascii=False)}')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=36000,
help="server port")
parser.add_argument("--title", type=str, default="XVERSE-13B-Chat",
help="server title")
parser.add_argument("--model_path", type=str, default="./XVERSE-13B-Chat",
help="model path")
parser.add_argument("--tokenizer_path", type=str, default="./XVERSE-13B-Chat",
help="Path to the tokenizer.")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
# 初始化模型
init_model(args)
# 构建demo应用
with gr.Blocks(css=css) as demo:
gr.Markdown("# <center>{}</center>".format(args.title))
chatbot = gr.Chatbot(label="Chat history", height=650)
state = gr.State([])
advanced_desc = f"<b>system</b><br>输入对话背景知识。<br><b>exec</b><br>agent调用时,输入api执行后的结果。<br>"
with gr.Accordion("Advanced settings", open=False):
gr.HTML(advanced_desc)
with gr.Row():
system_text = gr.Textbox(label="system", show_label=True, value=system_tpl)
with gr.Row():
exec_text = gr.Textbox(label="exec", show_label=True, value=exec_tpl)
with gr.Row():
text_box = gr.Textbox(label="Message", show_label=False, placeholder="Enter message and press enter")
with gr.Row():
submit_btn = gr.Button(value="Send", variant="secondary")
reset_btn = gr.Button(value="Reset")
text_box.submit(fn=chat,
inputs=[text_box, state, system_text, exec_text],
outputs=[chatbot, state],
api_name="chat")
submit_btn.click(fn=chat,
inputs=[text_box, state, system_text, exec_text],
outputs=[chatbot, state])
# 用于清空text_box
def clear_textbox():
return gr.update(value=""), gr.update(value="")
text_box.submit(fn=clear_textbox, inputs=None, outputs=[text_box, exec_text])
submit_btn.click(fn=clear_textbox, inputs=None, outputs=[text_box, exec_text])
# 用于清空页面和重置state
def reset():
return None, []
reset_btn.click(fn=reset, inputs=None, outputs=[chatbot, state])
demo.queue(concurrency_count=4)
demo.launch(server_name="0.0.0.0", server_port=args.port)