-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_clean_mse.py
152 lines (112 loc) · 4.87 KB
/
trainer_clean_mse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
clean training using mse loss
"""
from utils.dataset import MyDataset
from torch.utils.data import DataLoader
import torch
import numpy as np
from torch.nn.functional import mse_loss
import random
import os
class Trainer_STAT:
def __init__(self, net, optimizer, train_loader, test_loader):
self.net = net
self.optimizer = optimizer
self.trainloader = train_loader
self.testloader = test_loader
def train(self):
self.net.train()
loss_sum = 0.
for feature, target in self.trainloader:
self.optimizer.zero_grad()
output = self.net(feature)
loss = mse_loss(output, target)
loss.backward()
self.optimizer.step()
loss_sum += loss.item() * len(target)
return loss_sum / len(self.trainloader.dataset)
def eval(self):
self.net.eval()
loss_sum = 0.
with torch.no_grad():
for feature, target in self.testloader:
output = self.net(feature)
loss = mse_loss(output, target)
loss_sum += loss.item() * len(target)
return loss_sum / len(self.testloader.dataset)
if __name__ == '__main__':
import json
import argparse
from utils.dataset import case_modifier
from helper import return_nn_model
import time
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--case_name', type = str, default = 'case14')
args = parser.parse_args()
with open("config.json") as f:
config = json.load(f)
random_seed = config['random_seed']
batch_size = config['nn']['batch_size']
batch_size_eval = config['nn']['batch_size_eval']
lr = config['nn'][f'lr_mse']
epoch = config['nn'][f'epoch_mse']
epoch_save = config['nn']['epoch_mse_warm']
model_dir = config['nn']['model_dir']
watch = config['nn']['watch_mse']
T_max = config['nn']['T_max']
min_lr_ratio = config['nn']['min_lr_ratio']
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
# data
train_dataset = MyDataset(case_name = args.case_name, mode = "train")
test_dataset = MyDataset(case_name = args.case_name, mode = "test")
trainloader = DataLoader(train_dataset, batch_size = batch_size, shuffle = True)
testloader = DataLoader(test_dataset, batch_size = batch_size_eval, shuffle = False)
is_small_size = config['is_small_size']
if is_small_size:
sample_size = len(train_dataset)
else:
sample_size = 'full'
print("==============================================")
print("Clean training on {} with MSE loss".format(args.case_name))
print("Size of train dataset: {} {}".format(sample_size, len(train_dataset)))
print("Size of test dataset: {}".format(len(test_dataset)))
print("Shape of feature: {}".format(train_dataset[0][0].shape))
# net
net = return_nn_model(is_load = False)
num_params = 0
for param in net.parameters():
num_params += param.numel()
print("Number of parameters: {}".format(num_params))
print("==============================================")
optimizer = torch.optim.Adam(net.parameters(), lr = lr)
trainer = Trainer_STAT(net, optimizer, trainloader, testloader)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(trainer.optimizer, T_max = T_max, eta_min = min_lr_ratio * lr)
best_loss = 1e5
save_path = f'{model_dir}/{sample_size}/mse.pth'
save_path_warm = f'{model_dir}/{sample_size}/mse_warm.pth'
if not os.path.exists(f'{model_dir}/{sample_size}'):
os.makedirs(f'{model_dir}/{sample_size}')
for i in range(1, epoch+1):
start_time = time.time()
train_loss = trainer.train()
test_loss = trainer.eval()
print("Epoch {}: train loss-{:.6f}, test loss-{:.6f}".format(i, train_loss, test_loss))
# print("Epoch {}: train loss-{:.6f}".format(i, train_loss))
print("Time: {:.2f}s".format(time.time() - start_time))
lr_scheduler.step()
for param_group in trainer.optimizer.param_groups:
print("LR: {:.6f}".format(param_group['lr']))
if watch == 'train' and train_loss < best_loss:
best_loss = train_loss
torch.save(trainer.net.state_dict(), save_path)
print("Best model saved by train!")
if watch == 'test' and test_loss < best_loss:
best_loss = test_loss
torch.save(trainer.net.state_dict(), save_path)
print("Best model saved by test!")
if i == epoch_save:
torch.save(trainer.net.state_dict(), save_path_warm)
print("Warm Model saved!")
print("==============================================")