-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatgpt.py
188 lines (145 loc) · 6.52 KB
/
chatgpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
from datetime import date, datetime
import openai
from dotenv import load_dotenv
import cai
load_dotenv() # take environment variables from .env.
class Prompt:
def __init__(self, ai_prompt: str, approx_words: int | None, approx_max_words: int, creativity01: float,
stream_output: True):
"""
:param ai_prompt:
:param approx_words:
:param approx_max_words:
:param creativity01: 0 means more exact answers, 1 means full creativity and novelty, also gives different
answers each time (it adds entropy)
"""
self.ai_prompt = ai_prompt
self.approx_words = approx_words
self.approx_max_words = approx_max_words
self.creativity01 = creativity01
self.stream_output = stream_output
def __str__(self):
return f'[' \
f'approx_max_words={self.approx_max_words}, ' \
f'creativity01={self.creativity01}, ' \
f'stream_output={self.stream_output}, ' \
f']:\n' \
f'{self.ai_prompt}'
class PromptResult:
def __init__(self, resp):
self.resp = resp
def __str__(self):
return self.resp.choices[0].text
class ChatGptGen:
def __init__(self, user_hint: str):
self.user_hint = user_hint
def gen(self, prompt: Prompt) -> PromptResult:
openai.api_key = os.getenv("OPENAI_API_KEY")
response = self.__request(prompt)
return PromptResult(response)
def __request(self, prompt: Prompt):
response = openai.Completion.create(
model=cai.OPEN_AI_COMPLETION_MODEL,
prompt=self.__generate_para_prompt_text(prompt),
temperature=prompt.creativity01,
# 1 by default, but making it explicit and safe-guarding for future API changes
n=1,
# 16 is default, 4096 is max (for new models)
# max_tokens=16,
max_tokens=cai.get_max_tokens_param(prompt.approx_max_words, prompt.ai_prompt),
# [-2.0, 2.0]. 0.0 by default. Positive values make it go on less tangents in the conversation
# A likely analogy: presence_penalty works on meaning while frequency_penalty on verbatim constructs
# https://beta.openai.com/docs/api-reference/parameter-details
presence_penalty=0.1,
# [-2.0, 2.0]. 0.0 by default. See presence_penalty
frequency_penalty=0.1,
# False by default
stream=prompt.stream_output,
# 1 by default. Could increase accuracy, but linearly increases costs
best_of=1,
# uid of the end-user. optional
user=self.user_hint,
# Use the tokenizer tool at https://beta.openai.com/tokenizer?view=bpe to
# TODO there's an API on that page
# Map example: {"50256": -1} to
# Bias in [-100, 100]
# Use values in [-1, 1] to change the likelihood of a token, and bigger values for a ban or
# exclusive-selection (respectively). So values in [-1, 1] aren't actual probabilities, but biases
logit_bias={}
)
return response
# noinspection PyMethodMayBeStatic
def __generate_para_prompt_text(self, prompt: Prompt):
if prompt.approx_words is None:
return prompt.ai_prompt
return f'Answer in about {prompt.approx_words} words: {prompt.ai_prompt}'
class Prompter:
def __init__(self, gen: ChatGptGen):
self.gen = gen
def run(self):
ai_name = 'ChatGPT'
# ai_name = 'Cassandra'
intro = f"You are {ai_name}, a large language model trained by OpenAI. You answer as concisely as " \
f"possible for each response, unless otherwise specified or the number of words is specified. " \
f"If you are generating a list, do not have too many items. Keep the number of items short. " \
f"Knowledge cutoff: 2021-09, " \
f"Current date: {str(date.today())}"
# intro = f"Your name is {ai_name}."
intro = f"{intro}\n\n" \
f"Below is a past conversation between us. Please complete it:\n\n"
history = []
while True:
message = input('You: ')
if message == 'exit':
break
full_prompt = ''
full_prompt += intro
full_prompt += '\n'.join([
f'Me: {h["user"]}\n'
f'You: {h["ai"]}\n' # extra line-break between Q:A pairs
for h in history
])
full_prompt += f'Me: {message}\n'
full_prompt += f'You: \n'
history_tc = cai.convert_string_to_num_tokens(full_prompt)
response_approx_max_words = 500
response_approx_max_tokens = cai.convert_words_to_tokens(response_approx_max_words)
# TODO always add the first paras (instructions on who are we etc.), add the fact that there's some missing
# info etc.
total_tokens = history_tc + response_approx_max_tokens
if total_tokens > cai.MAX_TOKENS_SAFE:
surplus_tokens = total_tokens - cai.MAX_TOKENS_SAFE
surplus_tokens_ratio = surplus_tokens / cai.MAX_TOKENS_SAFE
surplus_nchars = round(len(full_prompt) * surplus_tokens_ratio)
# TODO
conv_cut_explanation = f"[This part was removed]\n\n"
full_prompt = full_prompt[-surplus_nchars:]
p = Prompt(full_prompt, approx_words=None, approx_max_words=response_approx_max_words,
creativity01=0.5, stream_output=True)
try:
result = self.gen.gen(p)
except Exception as e:
print(e)
print(f'[Sorry, that didn\'t work. Please try again:]')
continue
resp_text_so_far = ''
print(f'{ai_name}: ', end='')
try:
for part in result.resp:
resp_text = part.choices[0].text
resp_text_so_far += resp_text
print(resp_text, end='')
except Exception as e:
print(e)
print(f'[Sorry, something interrupted the response. Please try again]')
continue
history.append({'user': message, 'ai': resp_text_so_far})
print('\n')
def main():
user_hint = f'random user at {datetime.utcnow()}'
gen = ChatGptGen(user_hint)
p = Prompter(gen)
p.run()
if __name__ == '__main__':
main()