forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathruntime.py
141 lines (115 loc) · 5.76 KB
/
runtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -*- coding: utf-8 -*-
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
"""Provide a layer of abstraction for an OpenVINO runtime environment."""
import logging
from typing import Dict, List, Union
import numpy as np
from openvino.runtime import Core
from openvino.runtime.exceptions import UserInputError
from openvino.runtime import Model, Node, Tensor, Type
from openvino.runtime.utils.types import NumericData, get_shape, get_dtype
import tests
log = logging.getLogger(__name__)
def runtime(backend_name: str = "CPU") -> "Runtime":
"""Create a Runtime object (helper factory)."""
return Runtime(backend_name)
def get_runtime():
"""Return runtime object."""
if tests.BACKEND_NAME is not None:
return runtime(backend_name=tests.BACKEND_NAME)
else:
return runtime()
class Runtime(object):
"""Represents a graph runtime environment."""
def __init__(self, backend_name: str) -> None:
self.backend_name = backend_name
log.debug(f"Creating runtime for {backend_name}")
self.backend = Core()
assert backend_name in self.backend.available_devices, 'The requested device "' + backend_name + '" is not supported!'
def set_config(self, config: Dict[str, str]) -> None:
"""Set the runtime configuration."""
self.backend.set_property(device_name=self.backend_name, properties=config)
def computation(self, node_or_model: Union[Node, Model], *inputs: Node) -> "Computation":
"""Return a callable Computation object."""
if isinstance(node_or_model, Node):
model = Model(node_or_model, inputs, node_or_model.name)
return Computation(self, model)
elif isinstance(node_or_model, Model):
return Computation(self, node_or_model)
else:
raise TypeError(
"Runtime.computation must be called with an OpenVINO Model object "
"or an OpenVINO node object an optionally Parameter node objects. "
"Called with: %s",
node_or_model,
)
def __repr__(self) -> str:
return f"<Runtime: Backend='{self.backend_name}'>"
class Computation(object):
"""Graph callable computation object."""
def __init__(self, runtime: Runtime, model: Model) -> None:
self.runtime = runtime
self.model = model
self.parameters = model.get_parameters()
self.results = model.get_results()
self.network_cache = {}
def convert_buffers(self, source_buffers, target_dtypes):
converted_buffers = []
for i in range(len(source_buffers)):
key = list(source_buffers)[i]
target_dtype = target_dtypes[i]
# custom conversion for bf16
if self.results[i].get_output_element_type(0) == Type.bf16:
converted_buffers.append((source_buffers[key].view(target_dtype)).astype(target_dtype))
else:
converted_buffers.append(source_buffers[key].astype(target_dtype))
return converted_buffers
def convert_to_tensors(self, input_values):
input_tensors = []
for parameter, input_val in zip(self.parameters, input_values):
if not isinstance(input_val, (np.ndarray)):
input_val = np.ndarray([], type(input_val), np.array(input_val))
if parameter.get_output_element_type(0) == Type.bf16:
input_tensors.append(Tensor(Type.bf16, input_val.shape))
input_tensors[-1].data[:] = input_val.view(np.float16)
else:
input_tensors.append(Tensor(input_val))
return input_tensors
def __repr__(self) -> str:
params_string = ", ".join([param.name for param in self.parameters])
return f"<Computation: {self.model.get_name()}({params_string})>"
def __call__(self, *input_values: NumericData) -> List[NumericData]:
"""Run computation on input values and return result."""
# Input validation
if len(input_values) < len(self.parameters):
raise UserInputError(
"Expected %s params, received not enough %s values.",
len(self.parameters),
len(input_values),
)
param_names = [param.friendly_name for param in self.parameters]
input_shapes = [get_shape(input_value) for input_value in input_values]
if self.network_cache.get(str(input_shapes)) is None:
model = self.model
self.network_cache[str(input_shapes)] = model
else:
model = self.network_cache[str(input_shapes)]
compiled_model = self.runtime.backend.compile_model(model, self.runtime.backend_name)
is_bfloat16 = any(parameter.get_output_element_type(0) == Type.bf16 for parameter in self.parameters)
if is_bfloat16:
input_values = self.convert_to_tensors(input_values)
request = compiled_model.create_infer_request()
result_buffers = request.infer(dict(zip(param_names, input_values)))
"""Note: other methods to get result_buffers from request
First call infer with no return value:
request.infer(dict(zip(param_names, input_values)))
Now use any of following options:
result_buffers = [request.get_tensor(n).data for n in request.outputs]
result_buffers = [request.get_output_tensor(i).data for i in range(len(request.outputs))]
result_buffers = [t.data for t in request.output_tensors]
"""
# # Since OV overwrite result data type we have to convert results to the original one.
original_dtypes = [get_dtype(result.get_output_element_type(0)) for result in self.results]
converted_buffers = self.convert_buffers(result_buffers, original_dtypes)
return converted_buffers