Skip to content

Latest commit

 

History

History
119 lines (90 loc) · 6.09 KB

README.md

File metadata and controls

119 lines (90 loc) · 6.09 KB

🚧 pipegoose: Large-scale 4D parallelism multi-modal pre-training for 🤗 transformers in Mixture of Experts

tests Code style: black Codecov Imports: isort

pipeline

We're building an end-to-end library for training multi-modal MoE in a decentralized way, as proposed by the paper DiLoCo. The core papers that we are replicating are:

  • DiLoCo: Distributed Low-Communication Training of Language Models [link]
  • Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [link]
  • Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [link]
  • Flamingo: a Visual Language Model for Few-Shot Learning [link]
  • Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism [link]

If you're interested in contributing, check out [CONTRIBUTING.md] [good first issue] [roadmap]. Come join us: [discord link]

⚠️ Currently only parallelize transformers's bloom is supported.

from torch.utils.data import DataLoader
+ from torch.utils.data.distributed import DistributedSampler
from torch.optim import Adam
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset

+ from pipegoose.distributed import ParallelContext, ParallelMode
+ from pipegoose.nn import DataParallel, TensorParallel
+ from pipegoose.optim import DistributedOptimizer

model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
tokenizer.pad_token = tokenizer.eos_token

BATCH_SIZE = 4
+ DATA_PARALLEL_SIZE = 2
+ parallel_context = ParallelContext.from_torch(
+    tensor_parallel_size=2,
+    data_parallel_size=2,
+    pipeline_parallel_size=1
+ )
+ model = TensorParallel(model, parallel_context).parallelize()
+ model = DataParallel(model, parallel_context).parallelize()
model.to("cuda")
+ device = next(model.parameters()).device

optim = Adam(model.parameters(), lr=1e-3)
+ optim = DistributedOptimizer(optim, parallel_context)

dataset = load_dataset("imdb", split="train")
+ dp_rank = parallel_context.get_local_rank(ParallelMode.DATA)
+ sampler = DistributedSampler(dataset, num_replicas=DATA_PARALLEL_SIZE, rank=dp_rank, seed=42)
+ dataloader = DataLoader(dataset, batch_size=BATCH_SIZE // DATA_PARALLEL_SIZE, shuffle=False, sampler=sampler)

for epoch in range(100):
+    sampler.set_epoch(epoch)

    for batch in dataloader:
        inputs = tokenizer(batch["text"], padding=True, truncation=True, max_length=1024, return_tensors="pt")
        inputs = {name: tensor.to(device) for name, tensor in inputs.items()}
        labels = inputs["input_ids"]

        outputs = model(**inputs, labels=labels)

        optim.zero_grad()
        outputs.loss.backward()
        optim.step()

Installation and try it out

You can install the package through the following command:

git clone https://github.com/xrsrke/pipegoose.git
cd pipegoose && pip install -e .

And try out a hybrid tensor and data parallelism training script (You must have at least 4 GPUs in order to try hybrid 2D parallelism).

cd pipegoose/examples
torchrun --standalone --nnodes=1 --nproc-per-node=4 hybrid_parallelism.py

We did a small scale correctness test by comparing the validation losses between a paralleized transformer and one kept by default, starting at identical checkpoints and training data. We will conduct rigorous large scale convergence and weak scaling law benchmarks against Megatron and DeepSpeed in the near future if we manage to make it.

  • Data Parallelism [link]
  • Tensor Parallelism [link] (We've found a bug in convergence, and we are fixing it)
  • Hybrid 2D Parallelism (TP+DP) [link]
  • Distributed Optimizer ZeRO-1 Convergence: [sgd link] [adam link]
  • Mixture of Experts [link]

Features

  • End-to-end multi-modal including in 3D parallelism including distributed CLIP..
  • Sequence parallelism and Mixture of Experts that work in 3D parallelism
  • ZeRO-1: Distributed Optimizer
  • Kernel fusion
  • ...

Appreciation

  • Big thanks to 🤗 Hugging Face for sponsoring this project with GPUs for testing!

  • The library's APIs are inspired by OSLO's and ColossalAI's APIs.

Citation

@software{pipegoose,
  title = {{pipegoose: Large-scale 4D parallelism pre-training for `transformers`}},
  author = {},
  url = {https://github.com/xrsrke/pipegoose},
  doi = {},
  month = {},
  year = {2024},
  version = {},
}