-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgonio_psic.py
1160 lines (1015 loc) · 41.7 KB
/
gonio_psic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Gonio calcs for 6 circle psic geometry
Authors / Modifications:
------------------------
Tom Trainor ([email protected])
Frank Heberling ([email protected])
Notes:
------
The following describes the calculations used to define the orientation
matrix of a xtal mounted on a goniometer and to convert between
motor angles and hkl and visa-versa. Additional functions are also
provided for computing beam and detector slit aperature vectors
and sample position vectors etc..
Define the matrix B which which transforms the indicies of the
reciprocal lattice vector, h=[h,k,l], to a cartesian basis,
hc=[xc,yc,zc], where the cartesian system has been chosen so that:
x is parrallel to ar,
y is in the plane of ar and br,
z is perp to the plane of ar and br
(see Busing and Levy)
Therefore:
hc = B*h
Note that hc (and the cartesian basis) is defined with respect to
the crystal lattice therefore is independant of the gonio angles.
U is the matrix that defines how the sample is mounted on the
diffractometer. For example we define the lab frame coordinate
system for the psic geometry such that:
x is vertical (perpendicular, pointing to the ceiling of the hutch)
y is directed along the incident beam path
z make the system right handed and lies in the horizontal scattering plane
(i.e. z is parallel to the phi axis)
Therefore with all gonio angles set to zero the lab xyz axis are coincident
with the goniometer axes in a well defined way (depending on the axis definitions).
Note that the yz plane is the horizontal scattering plane, and yx is the vertical
scattering plane.
With the instrument settings all at zero angles (phi frame), and with the
sample oriented in an arbitrary maner, the matrix U is used to calculate
the lab frame indicies (hphi) of a given reciprocal lattice vector, h=[h,k,l],
according to:
hphi = U*hc = U*B*h
Therefore, U is a simple rotation matrix which gives
the indicies of h in the phi frame accounting for how
the sample is mounted. ie this matrix (or its transpose)
would take the cartesian reciprocal basis vectors (hc) and
rotate them to be coincident with the lab frame (phi-frame)
basis vectors
The algorithm to determine U from a set of reflections and angles
is given by Busing and Levy
We can then orient the hphi vector in the lab frame applying the rotation
matricies of the various gonio axes.
For psic geom from You's paper the order of sample
axis rotations is:
1. phi rotation (matrix = P)
2. chi rotation (matrix = X)
3. eta rotation (matrix = H)
4. mu rotation (matrix = M)
To calculate the lab frame coords of h --> hm:
hm = M*H*X*P*hphi = M*H*X*P*U*B*h
Or letting Z = M*H*X*P,
hm = Z*hphi
Therefore, hm gives the indicies of the recip lattice vector, h,
in the lab frame cartesian basis after the sample is rotated.
The diffraction condition specifies that:
Q = (2*pi)*h
The lab frame coordinates of Q can be calc from:
Qm = kr - ki
where ki and kr in the lab frame are given (for psic) by :
ki = (2*pi/lam)*[ 0, 1, 0 ]
kr = (2*pi/lam)*[ sin(del), cos(nu)*cos(del),sin(nu)*cos(del) ]
Qm = kr - ki;
or
| sin(del) |
Qm = k* |cos(del)*cos(nu) - 1|
| cos(del)*sin(nu) |
Therefore the diffraction condition in the lab frame is
Qm = (2*pi)*hm = (2*pi)*Z*hphi = (2*pi)*Z*U*B*h
Now given an orientation matrix and set of gonio
angles we can then solve for hphi
hphi = inv(Z) * Qm / (2*pi)
The reciprocal lattice indicies (h) are then calc from
h = inv(UB)*hphi
This gives the hkl values of the vector that is in the
diffraction condition for a given set of angles.
References:
-----------
1. H. You, J. Appl. Cryst. (1999) 32, 614-623
2. Busy and Leving
"""
##########################################################################
import numpy as num
import types
import copy
from mathutil import cosd, sind, tand
from mathutil import arccosd, arcsind, arctand
from mathutil import cartesian_mag, cartesian_angle
from lattice import Lattice
##########################################################################
class Psic:
"""
Orientation calculations for Psic geometry.
The default dummy orientation matrix is set up
assuming the sample is mounted such that (001) plane
is perpendicular to the eta and phi rot axes
(ie c-axis is parrallel to the eta and phi rot axes)
and that the b-axis is parallel to the nu and mu rot axes
(ie parrallel to the lab frame Z)
"""
###################################################
def __init__(self,a=10.,b=10.,c=10.,alpha=90.,beta=90.,gamma=90.,lam=1.0):
"""
Initialize
Parameters:
-----------
* a,b,c in angstroms
* alpha, beta, gamma in degrees,
* lambda in angstroms
"""
# set lattice and lambda
self.lattice = Lattice(a,b,c,alpha,beta,gamma,lam)
# hold gonio angles
self.angles={'phi':0.0,'chi':0.0,'eta':0.0,'mu':0.0,
'nu':0.0,'delta':0.0}
# hold psuedo angles
self.pangles = {}
self.calc_psuedo = True
# hold n (reference) vector in HKL
# eg surface normal vector for psuedo angles
self.n = num.array([0.,0.,1.],dtype=float)
# Z and calc h
self.Z = []
self.Q = []
self.ki = []
self.kr = []
self.h = [0.,0.,0.]
# dummy primary reflection
tth = self.lattice.tth([0.,0.,1.],lam=lam)
self.or0={'h':num.array([0.,0.,1.]),
'phi':0.0,'chi':0.0,'eta':0.0,'mu':tth/2.,
'nu':tth,'delta':0.0,'lam':lam}
# dummy secondary reflection
tth = self.lattice.tth([0.,1.,0.],lam=lam)
self.or1={'h':num.array([0.,1.,0.]),
'phi':0.0,'chi':0.0,'eta':tth/2.,'mu':0.0,
'nu':0.0,'delta':tth,'lam':lam}
# Compute OR matricies
self.U = []
self.B = []
self.UB = []
self._calc_UB()
###################################################
def __repr__(self,):
""" display """
lout = self.lattice.__repr__()
lout = "%sPrimary:\n h=%3.2f,k=%3.2f," % (lout,self.or0['h'][0],self.or0['h'][1])
lout = "%sl=%3.2f, lam=%6.6f\n" % (lout,self.or0['h'][2],self.or0['lam'])
lout = "%s phi=%6.3f,chi=%6.3f," % (lout,self.or0['phi'],self.or0['chi'])
lout = "%seta=%6.3f,mu=%6.3f," % (lout,self.or0['eta'],self.or0['mu'])
lout = "%snu=%6.3f,delta=%6.3f\n" % (lout,self.or0['nu'],self.or0['delta'])
#
lout = "%sSecondary:\n h=%3.2f,k=%3.2f," % (lout,self.or1['h'][0],self.or1['h'][1])
lout = "%sl=%3.2f, lam=%6.6f\n" % (lout,self.or1['h'][2],self.or1['lam'])
lout = "%s phi=%6.3f,chi=%6.3f," % (lout,self.or1['phi'],self.or1['chi'])
lout = "%seta=%6.3f,mu=%6.3f," % (lout,self.or1['eta'],self.or1['mu'])
lout = "%snu=%6.3f,delta=%6.3f\n" % (lout,self.or1['nu'],self.or1['delta'])
#
lout = "%sSetting:" % (lout)
lout = "%s h=%3.2f,k=%3.2f,l=%3.2f\n" % (lout,self.h[0],self.h[1],self.h[2])
lout = "%s phi=%6.3f,chi=%6.3f," % (lout,self.angles['phi'],self.angles['chi'])
lout = "%seta=%6.3f,mu=%6.3f," % (lout,self.angles['eta'],self.angles['mu'])
lout = "%snu=%6.3f,delta=%6.3f\n" % (lout,self.angles['nu'],self.angles['delta'])
#
if self.calc_psuedo:
lout = "%s TTH=%6.3f," % (lout,self.pangles['tth'])
lout = "%sSIGMA_AZ=%6.3f," % (lout,self.pangles['sigma_az'])
lout = "%sTAU_AZ=%6.3f," % (lout,self.pangles['tau_az'])
lout = "%sN_AZ=%6.3f," % (lout,self.pangles['naz'])
lout = "%sALPHA=%6.3f," % (lout,self.pangles['alpha'])
lout = "%sBETA=%6.3f\n" % (lout,self.pangles['beta'])
lout = "%s TAU=%6.3f," % (lout,self.pangles['tau'])
lout = "%sPSI=%6.3f," % (lout,self.pangles['psi'])
lout = "%sQ_AZ=%6.3f," % (lout,self.pangles['qaz'])
lout = "%sOMEGA=%6.3f," % (lout,self.pangles['omega'])
#
return lout
###################################################
def set_lat(self,a=None,b=None,c=None,alpha=None,
beta=None,gamma=None,lam=None):
"""
Update lattice parameters and lambda
Parameters:
-----------
* a,b,c in angstroms
* alpha, beta, gamma in degrees,
* lambda in angstroms
"""
self.lattice.update(a=a,b=b,c=c,alpha=alpha,
beta=beta,gamma=gamma,lam=lam)
self._calc_UB()
def set_spec_G(self,G,preparsed=False):
"""
Take the spec G array for the psic geometry
and set all the relevant orientation info...
"""
if not preparsed:
(cell,or0,or1,n) = spec_psic_G(G)
else:
(cell,or0,or1,n) = G
self.n = n
self.or0 = or0
self.or1 = or1
self.lattice = Lattice(*cell)
self._calc_UB()
###################################################
def set_or0(self,h=None,phi=None,chi=None,eta=None,
mu=None,nu=None,delta=None,lam=None):
"""
Set / adjust the primary orientation reflection
Parameters:
-----------
* h is the hkl array of the reflection
* the rest of the parameters are motor angles
in degrees,
* lam is the wavelength in angstroms
If lam = None, then lambda defined for the lattice
is used.
"""
if h!=None: self.or0['h'] = num.array(h,dtype=float)
if phi!=None: self.or0['phi']=float(phi)
if chi!=None: self.or0['chi']=float(chi)
if eta!=None: self.or0['eta']=float(eta)
if mu!=None: self.or0['mu']=float(mu)
if nu!=None: self.or0['nu']=float(nu)
if delta!=None: self.or0['delta']=float(delta)
if lam!= None: self.or0['lam']=float(lam)
self._calc_UB()
def set_or1(self,h=None,phi=None,chi=None,eta=None,
mu=None,nu=None,delta=None,lam=None):
"""
Set / adjust the secondary orientation reflection
Parameters:
-----------
* h is the hkl array of the reflection
* the rest of the parameters are motor angles
in degrees,
* lam is the wavelength in angstroms
If lam = None, then lambda defined for the lattice
is used.
"""
if h!=None: self.or1['h'] = num.array(h,dtype=float)
if phi!=None: self.or1['phi']=float(phi)
if chi!=None: self.or1['chi']=float(chi)
if eta!=None: self.or1['eta']=float(eta)
if mu!=None: self.or1['mu']=float(mu)
if nu!=None: self.or1['nu']=float(nu)
if delta!=None: self.or1['delta']=float(delta)
if lam!= None: self.or1['lam']=float(lam)
self._calc_UB()
def swap_or(self,):
"""
Swap the primary and secondary reflection
"""
tmp = copy.copy(self.or0)
self.or0 = copy.copy(self.or1)
self.or1 = tmp
self._calc_UB()
###################################################
def _calc_UB(self,):
"""
Calculate the orientation matrix, U,
from the primary and secondary
reflectons and given lattice
Note dont really ever use B by itself. so we
should combine this and above to calc_UB and
just store UB??
"""
# use these, note they are used below on vectors
# defined in the cartesian lab frame basis
cross = num.cross
norm = num.linalg.norm
#Calculate the B matrix
(a,b,c,alp,bet,gam) = self.lattice.cell()
(ar,br,cr,alpr,betr,gamr) = self.lattice.rcell()
B = num.array([[ar, br*cosd(gamr), cr*cosd(betr) ],
[0., br*sind(gamr), -cr*sind(betr)*cosd(alp)],
[0., 0., 1./c ]])
self.B = B
# calc Z and Q for the OR reflections
Z1 = calc_Z(self.or0['phi'],self.or0['chi'],self.or0['eta'],self.or0['mu'])
Q1 = calc_Q(self.or0['nu'],self.or0['delta'],self.or0['lam'])
#
Z2 = calc_Z(self.or1['phi'],self.or1['chi'],self.or1['eta'],self.or1['mu'])
Q2 = calc_Q(self.or1['nu'],self.or1['delta'],self.or1['lam'])
# calc the phi frame coords for diffraction vectors
# note divide out 2pi since the diffraction condition
# is 2pi*h = Q
vphi_1 = num.dot(num.linalg.inv(Z1), (Q1/(2.*num.pi)))
vphi_2 = num.dot(num.linalg.inv(Z2), (Q2/(2.*num.pi)))
#calc cartesian coords of h vectors
hc_1 = num.dot(self.B, self.or0['h'])
hc_2 = num.dot(self.B, self.or1['h'])
#So at this point the following should be true:
# vphi_1 = U*hc_1
# vphi_2 = U*hc_2
# and we could use these relations to solve for U.
# But U solved directly from above is likely not to be orthogonal
# since the angles btwn (vphi_1 and vphi_2) and (hc_1 and hc_2) are
# not exactly the same due to expt errors.....
# Therefore, get an orthogonal solution for U from the below treatment
#define the following normalized vectors from hc vectors
tc_1 = hc_1 / norm(hc_1)
tc_3 = cross(tc_1, hc_2) / norm(cross(tc_1, hc_2))
tc_2 = cross(tc_3, tc_1) / norm(cross(tc_3, tc_1))
#define tphi vectors from vphi vectors
tphi_1 = vphi_1 / norm(vphi_1)
tphi_3 = cross(tphi_1,vphi_2) / norm(cross(tphi_1,vphi_2))
tphi_2 = cross(tphi_3,tphi_1) / norm(cross(tphi_3,tphi_1))
#define the following matrices
Tc = num.transpose(num.array([tc_1,tc_2,tc_3]))
Tphi = num.transpose(num.array([tphi_1,tphi_2,tphi_3]))
# calc orientation matrix U
# note either of the below work since Tc is orthogonal
#self.U = num.dot(Tphi, Tc.transpose())
self.U = num.dot(Tphi, num.linalg.inv(Tc))
# calc UB
self.UB = num.dot(self.U,self.B)
#update h and psuedo angles...
self.set_angles()
###################################################
def set_angles(self,phi=None,chi=None,eta=None,
mu=None,nu=None,delta=None):
"""
Set goniometer angles (all in degrees)
"""
if phi!=None: self.angles['phi']=float(phi)
if chi!=None: self.angles['chi']=float(chi)
if eta!=None: self.angles['eta']=float(eta)
if mu!=None: self.angles['mu']=float(mu)
if nu!=None: self.angles['nu']=float(nu)
if delta!=None: self.angles['delta']=float(delta)
# update h, also calc Z etc..
self._calc_h()
# update psuedo
self._update_psuedo()
def _calc_h(self,):
"""
Calculate the hkl values of the vector that is in the
diffraction condition for the given set of angles.
Notes:
------
Solve for hphi using Z and lab frame Q:
hphi = inv(Z) * Q / (2*pi)
then calc h from
h = inv(UB)*hphi
"""
self.Z = calc_Z(phi=self.angles['phi'],chi=self.angles['chi'],
eta=self.angles['eta'],mu=self.angles['mu'])
(Q,ki,kr) = calc_Q(self.angles['nu'],
self.angles['delta'],
self.lattice.lam,ret_k=True)
self.Q=Q
self.ki=ki
self.kr=kr
hphi = num.dot(num.linalg.inv(self.Z),self.Q) / (2.*num.pi)
h = num.dot(num.linalg.inv(self.UB),hphi)
self.h = h
###################################################
def set_n(self,n=[0,0,1]):
"""
Set n, the reference vector used for psuedo angles.
The n vector is given in hkl values. see calc_n
to determine n from chi and phi settings
"""
self.n = num.array(n,dtype=float)
self._update_psuedo()
def calc_n(self,fchi=0.0,fphi=0.0):
"""
Calculate the hkl values of a reference vector given
the chi and phi settings that align this
vector with the eta axis.
Notes:
------
This algorith is used, for example,
to compute the surface normal from the (flat) chi and
(flat) phi angles that leave an optical reflection in
a fixed position during an eta rotation
Note the vector is normalized such that
the largest component is unity,
ie n_hkl isn't a unit vector!
"""
# polar angles
sig_az = -fchi
tau_az = -fphi
# this block converts the chi and phi values to correctly
# defined polar coordinates, ie 0<= sig_az <= 180deg .....
if sig_az < 0.:
sig_az = -1.*sig_az
if tau_az < 0.:
tau_az = 180. + tau_az
elif tau_az > 0.:
tau_az = tau_az - 180.
# n in the unrotated lab frame (ie phi frame):
# this is a unit vector!
n_phi = num.array([ sind(sig_az)*cosd(tau_az),
-sind(sig_az)*sind(tau_az),
cosd(sig_az) ])
# n in HKL
n_hkl = num.dot(num.linalg.inv(self.UB),n_phi)
n_hkl = n_hkl/ num.max(num.abs(n_hkl))
# note if l-component is negative, then its
# pointing into the surface (ie assume positive L
# is the positive direction away from the surface)
# careful here!!
if n_hkl[2] < 0.:
n_hkl = -1.*n_hkl
# set n which triggers recalc of
# all the psuedo angles
self.set_n(n_hkl)
###################################################
## Pseudo angles
###################################################
def _update_psuedo(self):
"""
Compute psuedo angles
Note:
-----
use this to compute psuedo angles rather than
individual calls. ie some psuedo angles depend on others
so its important that the calc are executed in the correct
order. Also important is that _calc_h is called before this...
"""
self.pangles = {}
if self.calc_psuedo == True:
self._calc_tth()
self._calc_nm()
self._calc_sigma_az()
self._calc_tau_az()
self._calc_naz()
self._calc_alpha()
self._calc_beta()
self._calc_tau()
self._calc_psi()
self._calc_qaz()
self._calc_omega()
def _calc_tth(self):
"""
Calculate 2Theta, the scattering angle
Notes:
------
This should be the same as:
(ki,kr) = calc_kvecs(nu,delta,lambda)
tth = cartesian_angle(ki,kr)
You can also get this given h, the reciprocal lattice
vector that is in the diffraction condition. E.g.
h = self.calc_h()
tth = self.lattice.tth(h)
"""
nu = self.angles['nu']
delta = self.angles['delta']
tth = arccosd(cosd(delta)*cosd(nu))
self.pangles['tth'] = tth
def _calc_nm(self):
"""
Calculate the rotated cartesian lab indicies
of the reference vector n = nm. Note nm is
normalized.
Notes:
------
The reference vector n is given in recip
lattice indicies (hkl)
"""
# calc n in the rotated lab frame and make a unit vector
n = self.n
Z = self.Z
UB = self.UB
nm = num.dot(num.dot(Z,UB),n)
nm = nm/cartesian_mag(nm)
self.nm = nm
def _calc_sigma_az(self):
"""
sigma_az = angle between the z-axis and n
in the phi frame
"""
# calc n in the lab frame (unrotated) and make a unit vector
n_phi = num.dot(self.UB,self.n)
n_phi = n_phi/cartesian_mag(n_phi)
# note result of acosd is between 0 and pi
# get correct sign from the sign of the x-component
#sigma_az = num.sign(n_phi[0])*arccosd(n_phi[2])
sigma_az = arccosd(n_phi[2])
self.pangles['sigma_az'] = sigma_az
def _calc_tau_az(self):
"""
tau_az = angle between the projection of n in the
xy-plane and the x-axis in the phi frame
"""
# calc n in the lab frame (unrotated) and make a unit vector
n_phi = num.dot(self.UB,self.n)
n_phi = n_phi/cartesian_mag(n_phi)
tau_az = num.arctan2(-n_phi[1], n_phi[0])
tau_az = tau_az*180./num.pi
self.pangles['tau_az'] = tau_az
def _calc_naz(self):
"""
calc naz, this is the angle btwn the reference vector n
and the yz plane at the given angle settings
"""
# get norm reference vector in cartesian lab frame
nm = self.nm
naz = num.arctan2( nm[0], nm[2] )
naz = num.degrees(naz)
self.pangles['naz'] = naz
def _calc_alpha(self):
"""
Calc alpha, ie incidence angle or angle btwn
-1*k_in (which is parallel to lab-y) and the
plane perp to the reference vector n.
"""
nm = self.nm
ki = num.array([0.,-1.,0.])
alpha = arcsind(num.dot(nm,ki))
self.pangles['alpha'] = alpha
def _calc_beta(self):
"""
Calc beta, ie exit angle, or angle btwn k_r and the
plane perp to the reference vector n
Notes:
------
beta = arcsind(2*sind(tth/2)*cosd(tau)-sind(alpha))
"""
# calc normalized kr
#delta = self.angles['delta']
#nu = self.angles['nu']
#kr = num.array([sind(delta),
# cosd(nu)*cosd(delta),
# sind(nu)*cosd(delta)])
nm = self.nm
kr = self.kr / cartesian_mag(self.kr)
beta = arcsind(num.dot(nm, kr))
self.pangles['beta'] = beta
def _calc_tau(self):
"""
Calc tau, this is the angle btwn n and the scattering-plane
defined by ki and kr. ie the angle between n and Q
Notes:
------
Can also calc from:
tau = acos( cosd(alpha) * cosd(tth/2) * cosd(naz - qaz) ...
+ sind(alpha) * sind(tth/2) )
"""
tau = cartesian_angle(self.Q,self.nm)
self.pangles['tau'] = tau
def _calc_psi(self):
"""
calc psi, this is the azmuthal angle of n wrt Q.
ie for tau != 0, psi is the rotation of n about Q
Notes:
------
Note this must be calc after tth, tau, and alpha!
"""
tau = self.pangles['tau']
tth = self.pangles['tth']
alpha = self.pangles['alpha']
#beta = self.calc_beta()
#xx = (-cosd(tau)*sind(tth/2.) + sind(beta))
xx = (cosd(tau)*sind(tth/2.) - sind(alpha))
denom = (sind(tau)*cosd(tth/2.))
if denom == 0:
self.pangles['psi'] = 0.
return
xx = xx /denom
psi = arccosd( xx )
self.pangles['psi'] = psi
def _calc_qaz(self):
"""
Calc qaz, the angle btwn Q and the yz plane
"""
nu = self.angles['nu']
delta = self.angles['delta']
qaz = num.arctan2(sind(delta), cosd(delta)*sind(nu) )
qaz = num.degrees(qaz)
self.pangles['qaz'] = qaz
def _calc_omega(self):
"""
calc omega, this is the angle between Q and the plane
which is perpendicular to the axis of the chi circle.
Notes:
------
For nu=mu=0 this is the same as the four circle def:
omega = 0.5*TTH - TH, where TTH is the detector motor (=del)
and TH is the sample circle (=eta). Therefore, for
mu=nu=0 and del=0.5*eta, omega = 0, which means that Q
is in the plane perpendicular to the chi axis.
Note check sign of results???
"""
phi=self.angles['phi']
chi=self.angles['chi']
eta=self.angles['eta']
mu=self.angles['mu']
H = num.array([[ cosd(eta), sind(eta), 0.],
[-sind(eta), cosd(eta), 0.],
[ 0., 0., 1.]],float)
M = num.array([[ 1., 0., 0. ],
[ 0., cosd(mu), -sind(mu)],
[ 0., sind(mu), cosd(mu)]],float)
# check the mult order here!!!!
# T = num.dot(H.transpose(),M.transpose())
T = num.dot(M.transpose(),H.transpose())
Qpp = num.dot(T,self.Q)
#omega = -1.*cartesian_angle([Qpp[0], 0, Qpp[2]],Qpp)
omega = cartesian_angle([Qpp[0], 0, Qpp[2]],Qpp)
self.pangles['omega'] = omega
##########################################################################
def psic_from_spec(G,angles={},preparsed=False):
"""
pass spec G array and dictionary of angles
returns a psic instance
"""
gonio = Psic()
if G != None: gonio.set_spec_G(G, preparsed)
gonio.set_angles(**angles)
return gonio
##########################################################################
def spec_psic_G(G):
"""
Parse essential lattice and OR data
from the spec G array for psic geometry
See specfile.py for details.
"""
#azimuthal reference vector, n (hkl)
n = num.array(G[3:6],dtype=float)
#lattice params a,b,c,alp,bet,gam
cell = G[22:28]
# add lambda to end of cell
cell.append(G[66])
cell = num.array(cell,dtype=float)
# or0
or0 = {}
or0['h'] = num.array(G[34:37],dtype=float)
or0.update(_spec_or_angles(num.array(G[40:46],dtype=float)))
or0['lam'] = float(G[52])
# or1
or1 = {}
or1['h'] = num.array(G[37:40],dtype=float)
or1.update(_spec_or_angles(num.array(G[46:52],dtype=float)))
or1['lam'] = float(G[53])
return (cell,or0,or1,n)
##########################################################################
def _spec_or_angles(angles,calc_kappa=False):
"""
Angles defined by spec for the OR's.
See specfile.py
Notes:
------
Assume the following.
If parsing angles from the P array:
(generally shouldnt need this since angles
are tagged with motor labels on read)
angles = P
if psic:
angles = angles[0:5]
elif kappa fourc
angles = [angles[0:3], angles[8], angles[7]]
If parsing angles from the G array:
angles = G[x:y]
where x:y depend on whether you are
parsing out or0 or or1.
See spec_G below
We then assume the following:
del = angles[0]
eta = angles[1]
chi = angles[2]
phi = angles[3]
nu = angles[4]
mu = angles[5]
Note: calc kappa, keta and kphi
kap_alp = 50.031;
keta = eta - asin(-tan(chi/2)/tan(kap_alp))
kphi = phi - asin(-tan(chi/2)/tan(kap_alp))
kappa = asin(sin(chi/2)/sin(kap_alp))
"""
# angles from spec
delta = angles[0]
eta = angles[1]
chi = angles[2]
phi = angles[3]
nu = angles[4]
mu = angles[5]
# kappa angles
if calc_kappa:
kap_alp = 50.031;
keta = eta - arcsind(-tand(chi/2.)/tand(kap_alp))
kphi = phi - arcsind(-tand(chi/2.)/tand(kap_alp))
kappa = asind(sind(chi/2.)/sind(kap_alp))
return {'phi':phi,'chi':chi,'eta':eta,'mu':mu,
'delta':delta,'nu':nu,
'keta':keta,'kphi':kphi,'kappa':kappa}
else:
return {'phi':phi,'chi':chi,'eta':eta,'mu':mu,
'delta':delta,'nu':nu}
##########################################################################
def calc_Z(phi=0.0,chi=0.0,eta=0.0,mu=0.0):
"""
Calculate the psic goniometer rotation matrix Z
for the 4 sample angles. Angles are in degrees
Notes:
------
Z is the matrix that rotates a vector defined in the phi frame
ie a vector defined with all angles zero => vphi. After rotation
the lab frame coordinates of the vector => vm are given by:
vm = Z*vphi
"""
P = num.array([[ cosd(phi), sind(phi), 0.],
[-sind(phi), cosd(phi), 0.],
[ 0., 0., 1.]],float)
X = num.array([[ cosd(chi), 0., sind(chi)],
[ 0., 1., 0.],
[-sind(chi), 0., cosd(chi)]],float)
H = num.array([[ cosd(eta), sind(eta), 0.],
[-sind(eta), cosd(eta), 0.],
[ 0., 0., 1.]],float)
M = num.array([[ 1., 0., 0. ],
[ 0., cosd(mu), -sind(mu)],
[ 0., sind(mu), cosd(mu)]],float)
Z = num.dot(num.dot(num.dot(M,H),X),P)
return Z
##########################################################################
def calc_Q(nu=0.0,delta=0.0,lam=1.0,ret_k=False):
"""
Calculate psic Q in the cartesian lab frame.
nu and delta are in degrees, lam is in angstroms
if ret_k == True return tuple -> (Q,ki,kr)
"""
(ki,kr) = calc_kvecs(nu=nu,delta=delta,lam=lam)
Q = kr - ki
if ret_k == True:
return (Q,ki,kr)
else:
return Q
##########################################################################
def calc_kvecs(nu=0.0,delta=0.0,lam=1.0):
"""
Calculate psic ki, kr in the cartesian lab frame.
nu and delta are in degrees, lam is in angstroms
"""
k = (2.* num.pi / lam)
ki = k * num.array([0.,1.,0.],dtype=float)
kr = k * num.array([sind(delta),
cosd(nu)*cosd(delta),
sind(nu)*cosd(delta)],dtype=float)
return (ki,kr)
##########################################################################
def calc_D(nu=0.0,delta=0.0):
"""
Calculate the detector rotation matrix.
Angles are in degrees
Notes:
------
D is the matrix that rotates a vector defined in the phi frame
ie a vector defined with all angles zero => vphi. After rotation
the lab frame coordinates of the vector => vm are given by:
vm = D*vphi
For example
|0|
kr_phi = (2pi/lam) |1|
|0|
Since kr is defined by the detector rotation, the lab frame
coordinates of the kr vector after detector rotation are
kr_m = D*kr_phi
"""
D1 = num.array([[cosd(delta), sind(delta), 0.],
[-sind(delta), cosd(delta), 0.],
[ 0. , 0. , 1.]])
D2 = num.array([[ 1., 0. , 0. ],
[ 0., cosd(nu), -sind(nu)],
[ 0., sind(nu), cosd(nu)]])
D = num.dot(D2,D1)
return (D)
##########################################################################
def beam_vectors(h=1.0,v=1.0):
"""
Compute the beam apperature vectors in lab frame
Parameters:
-----------
* h = beam horz width (total slit width in lab-z,
or the horizontal scattering plane)
* v = beam vert hieght (total slit width in lab-x,
or the vertical scattering plane)
Notes:
------
The slit settings, defined wrt psic phi-frame
Assume these are centered on the origin
"""
# beam vectors, [x,y,z], in lab frame
bh = num.array([ 0., 0., 0.5*h])
bv = num.array([0.5*v, 0., 0.])
# corners of beam apperature
a = bv + bh
b = bv - bh
c = -bv - bh
d = -bv + bh
beam = [a,b,c,d]
return beam
##########################################################################
def det_vectors(h=1.0,v=1.0,nu=0.0,delta=0.0):
"""
Compute detector apperature vectors in lab frame
Parameters:
-----------
* h = detector horz width (total slit width in lab-z,
or the horizontal scattering plane)
* v = detector vert hieght (total slit width in lab-x,
or the vertical scattering plane)
Notes:
------
The slit settings, defined wrt psic phi-frame
Assume these are centered on the origin, then rotated
by del and nu
"""
# detector vectors, [x,y,z] in lab frame
# note rotation of the vectors...
dh = num.array([ 0., 0., 0.5*h])
dv = num.array([0.5*v, 0., 0. ])
D = calc_D(nu=nu,delta=delta)
dh = num.dot(D,dh)
dv = num.dot(D,dv)
# corners of detector apperature
e = dv + dh
f = dv - dh
g = -dv - dh
h = -dv + dh
det = [e,f,g,h]
return det
##########################################################################
def sample_vectors(sample,angles={},gonio=None):
"""
Parameters:
-----------
* sample = [[x,y,z],[x,y,z],[x,y,z],....]
is a list of vectors that describe the shape of
the sample. They should be given in general lab
frame coordinates.
* angles = {'phi':0.,'chi':0.,'eta':0.,'mu':0.}
are the instrument angles at which the sample
vectors were determined.
Notes:
------
The lab frame coordinate systems is defined such that:
x is vertical (perpendicular, pointing to the ceiling of the hutch)
y is directed along the incident beam path
z make the system right handed and lies in the horizontal scattering plane
(i.e. z is parallel to the phi axis)
The center (0,0,0) of the lab frame is the rotation center of the instrument.
If the sample vectors are given at the flat phi and chi values and with
the correct sample hieght (sample Z set so the sample surface is on the
rotation center), then the z values of the sample vectors will be zero.
If 2D vectors are passed we therefore assume these are [x,y,0]. If this
is the case then make sure:
angles = {'phi':flatphi,'chi':flatchi,'eta':0.,'mu':0.}
Note that the sample_poly that is returned is a list of 3D vectors.
If gonio == None these are defined in the lab phi frame.
If a gonio instance is passed then they will be rotated to the m-frame
The easiest way to determine the sample coordinate vectors is to take a picture
of the sample with a camera mounted such that is looks directly down the omega
axis and the gonio angles set at the sample flat phi and chi values and
eta = mu = 0. Then find the sample rotation center and measure the position
of each corner (in mm) with up being the +x direction, and downstream
being the +y direction.
"""
if sample == None: return None
if len(sample) < 3:
print "Sample polygon must be 3 or more points"
return None
# If angles are provided then we need to compute the phi