-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
160 lines (128 loc) · 5.08 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import sys
import torch
import torch.nn as nn
import torch.optim as optim
class ReverseFCNet(nn.Module):
def __init__(self, cfg, output_size):
super(ReverseFCNet, self).__init__()
input_size = cfg['problems']['input_size']
activation_type = cfg['model']['activation']
if activation_type == "ReLU":
activation_cls = nn.ReLU
elif activation_type == "ELU":
activation_cls = nn.ELU
elif activation_type == "LeakyReLU":
activation_cls = nn.LeakyReLU
fc_sizes = cfg['model']['fc_sizes'] + [output_size]
net = []
last_fc_size = input_size
for size in fc_sizes:
net.append(nn.Linear(last_fc_size, size))
net.append(activation_cls())
last_fc_size = size
# net[0].weight.data.fill_(1.0)
# net[0].bias.data.fill_(0.0)
net.pop(-1)
self.fc_net = nn.Sequential(*net)
print(self.fc_net)
def forward(self, x):
# x = torch.flatten(x, 1)
return self.fc_net(x)
class RegressionOptimizer:
def __init__(self, cfg, train_data_loader, test_data_loader, logger):
self.cfg = cfg
self.train_data_loader = train_data_loader
self.test_data_loader = test_data_loader
self.logger = logger
# Load cfg variables.
lr = cfg['model']['lr']
sgd_momentum = cfg['model']['optimizer_sgd_momentum']
self.batch_size = cfg['model']['batch_size']
self.n_epochs = cfg['model']['n_epochs']
self.train_eval_split = cfg['model']['train_eval_split']
# Set it all up.
# TODO 1 is hardcoded.
self.net = ReverseFCNet(cfg, 1)
self.criterion = nn.MSELoss()
if cfg['model']['optimizer'] == 'sgd':
self.optimizer = optim.SGD(
self.net.parameters(), lr=lr, momentum=sgd_momentum
)
elif cfg['model']['optimizer'] == 'Adam':
self.optimizer = optim.Adam(
self.net.parameters(), lr=lr
)
def train(self):
self.net.train()
data_len = len(self.train_data_loader)
for epoch in range(self.n_epochs):
batch_loss = 0.
for i, data in enumerate(self.train_data_loader):
inputs, labels = data
self.optimizer.zero_grad()
outputs = self.net(inputs.float())
loss = self.criterion(outputs.T, labels.float())
loss.backward()
self.optimizer.step()
# TODO!!! What if batch_size is not a factor of total size.
# Then the last term will be wrong.
batch_loss += loss.item() * self.batch_size
if i % 1000 == 0:
avg_loss = batch_loss / (i + 1)
msg = '[%d, %5d] loss: %.3f' % (epoch + 1, i, avg_loss)
sys.stdout.write('\r' + msg)
sys.stdout.flush()
# if i % 1000 == 0:
# for param in self.net.parameters():
# print(param.data)
# # print(param.shape)
# print('')
if i % 1000 == 0:
data = {
"loss_train": batch_loss / (i + 1)
}
self.logger.log_train(data, data_len * epoch + i)
self.net.eval()
data = {}
test_loss = self.eval(epoch, do_print=False, debug=epoch % 10 == 0)
data['loss_eval'] = test_loss
self.logger.log_eval_reverse(data, epoch)
self.net.train()
print('')
def eval(self, epoch, do_print=True, debug=False):
sse = 0
ssm_mean = None
n = 0
self.net.eval()
total_loss = 0.0
for i, data in enumerate(self.test_data_loader):
inputs, labels = data
outputs = self.net(inputs.float())
loss = self.criterion(outputs, labels)
sse += ((labels.numpy() - outputs[0].detach().numpy()) ** 2).sum()
if ssm_mean is None:
ssm_mean = labels.numpy()
else:
ssm_mean += labels.numpy()
n += 1
total_loss += loss.item()
if do_print and i % 1000 == 0:
msg = '[%d] loss: %.3f' % (i, total_loss / (i + 1))
sys.stdout.write('\r' + msg)
sys.stdout.flush()
ssm_mean /= n
ssm = 0
for i, data in enumerate(self.test_data_loader):
inputs, labels = data
ssm += ((labels.numpy() - ssm_mean) ** 2).sum()
R2 = 1 - (sse / ssm)
print(" ", sse, ssm)
print("R2", R2)
self.logger.log_custom_reverse_kpi("R2", R2, epoch)
data_len = len(self.test_data_loader)
return total_loss / data_len
def save(self, model_fname):
torch.save(self.net.state_dict(), 'models/' + model_fname)
def load(self, model_fname, output_size):
self.net = ReverseFCNet(self.cfg, output_size)
self.net.load_state_dict(torch.load(model_fname))