Skip to content

Latest commit

 

History

History
315 lines (253 loc) · 10.5 KB

README.md

File metadata and controls

315 lines (253 loc) · 10.5 KB

FNFTpy - a wrapper for FNFT

This module provides a python interface (wrapper functions) for FNFT, a library for the numerical computation of nonlinear Fourier transforms.

For FNFTpy to work, a copy of FNFT has to be installed. For general information, source files and installation of FNFT, visit FNFT's github page: https://github.com/FastNFT

current state - access functions from FNFT version 0.5.0

for changes and latest updates see Changelog

Korteweg-de-Vries equation with vanishing boundary conditions:

  • calculates the Nonlinear Fourier Transform of the Korteweg-de-Vries equation

with vanishing boundary conditions
  • calculation of the continuous spectrum:
    • reflection coefficient and/or the NFT coefficients a and b
  • calculation of the discrete spectrum:
    • bound states
    • norming constants and/or residues
    • initial guesses for bound states may be provided

Function kdvv:

  • easy-to-use Python function, options can be passed as optional arguments
  • minimal example:
import numpy as np
from FNFTpy import kdvv
D = 256
tvec = np.linspace(-1, 1, D)
q = np.zeros(D, dtype=np.complex128)
q[:] = 2.0 + 0.0j
gs = np.sqrt(np.max(np.abs(q))) / 1000.  # grid spacing
Xi1 = -2
Xi2 = 2
M = 8  # points for continuous spectrum
K = 8  # number of expected bound states
Xivec = np.linspace(Xi1, Xi2, M)
res = kdvv(q, tvec, K, M, Xi1=Xi1, Xi2=Xi2, gs=gs)
print("\n----- options used ----")
print(res['options'])
print("\n------ results --------")
print("FNFT return value: %d (should be 0)" % res['return_value'])
print("continuous spectrum: ")
for i in range(len(res['cont_ref'])):
    print("%d : Xi=%.3f   %.3e + %.3ej"%(i,
            Xivec[i], np.real(res['cont_ref'][i]),
            np.imag(res['cont_ref'][i])))
print("discrete spectrum")
for i in range(res['bound_states_num']):
    print("%d : bound state  %.3e + %.3ej with norming const %.3e + %.3ej"% (i,
              np.real(res['bound_states'][i]),np.imag(res['bound_states'][i]),
              np.real(res['disc_norm'][i]),np.imag(res['disc_norm'][i])))
  • for full description call help(kdvv)

  • function kdvv_wrapper:

    • mimics the function fnft_kdvv from FNFT.
    • for full description call help(kdvv_wrapper)

Manakov equation with vanishing boundary conditions

  • calculates the Nonlinear Fourier Transform of the Manakov equation

with vanishing boundary conditions
  • calculation of the continuous spectrum:

    • reflection coefficient and/or the NFT coefficients a, b1 and b2
  • calculation of the discrete spectrum:

    • bound states
    • norming constants and/or residues
    • initial guesses for bound states may be provided
  • Function manakovv:

    • easy-to-use Python function, options can be passed as optional arguments
    • minimal example:
import numpy as np
from FNFTpy import manakovv
D= 1024
M = 8
Xi1 = -1.75
Xi2 = 2
kappa = 1
q1 = np.zeros(D, dtype=np.complex128)
q2 = np.zeros(D, dtype=np.complex128)
tvec = np.linspace(-2, 2, D)
# standard
q1[:] = 2.0 + 0.0j
q2[:] = .650 + 0.0j
Xivec = np.linspace(Xi1, Xi2, M)
res = manakovv(q1, q2, tvec, M=M,  Xi1=Xi1, Xi2=Xi2)
print("-- continuous spectrum ---\n")
print("                  \t part 1\t\t\t\t\t\t part2")
for i in range(M):
    print("%d Xi = %.5f  \t%.4e + %.4ei \t%.4e + %.4ei" % (i + 1, Xivec[i],
                                       np.real(res['cont_ref1'][i]), np.imag(res['cont_ref1'][i]),
                                       np.real(res['cont_ref2'][i]), np.imag(res['cont_ref2'][i])))
* for full description call `help(manakovv)`
  • Function manakovv_wrapper:
    • mimics the function fnft_manakovv from FNFT.
    • for full description call help(manakovv_wrapper)

Nonlinear Schroedinger Equation with periodic boundary conditions

  • calculation of the Nonlinear Fourier Transform of the Nonlinear Schroedinger equation

with (quasi-)periodic boundary conditions
  • The main and auxiliary spectra can be calculated.
  • Function nsep:
    • easy-to-use Python function, options can be passed as optional arguments
  • minimal example:
import numpy as np
from FNFTpy import nsep
print("\n\nnsep example")
# set values
D = 256
tvec = np.linspace(0, 2*np.pi, D)
q = np.exp(2.0j * tvec)
# call function
res = nsep(q, 0, 2 * np.pi, bb=[-2, 2, -2, 2], filt=1, kappa=1)
# print results
print("\n----- options used ----")
print(res['options'])
print("\n------ results --------")
print("FNFT return value: %d (should be 0)" % res['return_value'])
print("number of samples: %d" % D)
print('main spectrum')
for i in range(res['K']):
  print("%d :  %.6f  %.6fj" % (i, np.real(res['main'][i]),
                                   np.imag(res['main'][i])))
print('auxiliary spectrum')
for i in range(res['M']):
  print("%d :  %.6f  %.6fj" % (i, np.real(res['aux'][i]),
                                    np.imag(res['aux'][i])))
  • for full description call help(nsep)
  • Function nsep_wrapper:
    • mimics the function fnft_nsep from FNFT.
    • for full description call help(nsep_wrapper)

Nonlinear Schroedinger Equation with vanishing boundary conditions:

  • calculates the Nonlinear Fourier Transform of the Nonlinear Schroedinger equation

with vanishing boundary conditions
  • calculation of the continuous spectrum:

    • reflection coefficient and/or the NFT coefficients a and b
  • calculation of the discrete spectrum:

    • bound states
    • norming constants and/or residues
    • initial guesses for bound states may be provided
  • Function nsev:

    • easy-to-use Python function, options can be passed as optional arguments
    • minimal example:
import numpy as np
from FNFTpy import nsev

# set values
D = 256
tvec = np.linspace(-1, 1, D)
q = np.zeros(len(tvec), dtype=np.complex128)
q[:] = 2.0 + 0.0j
M = 8
Xi1 = -2
Xi2 = 2
Xivec = np.linspace(Xi1, Xi2, M)

# call function
res = nsev(q, tvec, M=M, Xi1=Xi1, Xi2=Xi2)

# print results
print("\n----- options used ----")
print(res['options'])
print("\n------ results --------")

print("FNFT return value: %d (should be 0)" % res['return_value'])
print("continuous spectrum")
for i in range(len(res['cont_ref'])):
    print("%d :  Xi = %.4f   %.6f  %.6fj" % (i, Xivec[i], np.real(res['cont_ref'][i]), np.imag(res['cont_ref'][i])))
print("discrete spectrum")
for i in range(len(res['bound_states'])):
    print("%d : %.6f  %.6fj with norming const %.6f  %.6fj" % (i, np.real(res['bound_states'][i]),
                                                             np.imag(res['bound_states'][i]),
                                                             np.real(res['disc_norm'][i]),
                                                             np.imag(res['disc_norm'][i])))
  • for full description call help(nsev)

  • Function nsev_wrapper:

    • mimics the function fnft_nsev from FNFT.
    • for full description call help(nsev_wrapper)

Nonlinear Schroedinger Equation with vanishing boundary conditions (Inverse Transformation):

  • Perform the Inverse Nonlinear Fourier transform: the temporal field is calculated from the nonlinear spectrum.

  • the continuous part and (optional) the discrete part of the spectrum can be given.

  • function nsev_inverse

    • easy-to-use Python function, options can be passed as optional arguments
    • minimal example:
from FNFTpy import nsev_inverse, nsev_inverse_xi_wrapper
import numpy as np
D = 1024
M = 2 * D
Tmax = 15
tvec = np.linspace(-Tmax, Tmax, D)
# calculate suitable frequency bonds (xi)
rv, xi = nsev_inverse_xi_wrapper(D, tvec[0], tvec[-1], M)
xivec = xi[0] + np.arange(M) * (xi[1] - xi[0]) / (M - 1)
# analytic field: chirp-free N=2.2 Satsuma-Yajima pulse
q = 2.2 / np.cosh(tvec)
# semi-analytic nonlinear spectrum
bound_states = np.array([0.7j, 1.7j])
disc_norming_const_ana = [1.0, -1.0]
cont_b_ana = 0.587783 / np.cosh(xivec * np.pi) * np.exp(1.0j * np.pi)
# call the function
res = nsev_inverse(xivec, tvec, cont_b_ana, bound_states, disc_norming_const_ana, cst=1, dst=0)
# compare result to analytic function
print("\n\nnsev-inverse example: Satsuma-Yajima N=2.2")
print("Difference analytic - numeric: sum((q_ana-q_num)**2) = %.2e  (should be approx 0) " % np.sum(
    np.abs(q - res['q']) ** 2))
  • Function nsev_inverse_wrapper:
    • mimics the function fnft_nsev_inverse from FNFT.
    • for full description call help(nsev_inverse_wrapper)

Requirements

  • Python 3.8 and above
  • additional Python module: NumPy (python-numpy)

Setup

  • you may install FNFTpy locally using pip: From within the project root folder run

    pip install .     # Install system wide
    pip install -e .  # Install in editable/development mode
    
  • alternatively, you may add the FNFTpy folder to your Python path.

  • Naturally, you need a compiled version of the FNFT C-library. See the documentation for FNFT on how to build the library on your device.

  • FNFTpy needs to know where the C-library is located. This configuration can be done by editing the function get_lib_path() in auxiliary.py.

    Example:

def get_lib_path():
    """Return the path of the FNFT file.

    Here you can set the location of the compiled library for FNFT.
    See example strings below.

    Returns:

    * libstring : string holding library path

    Example paths:

        * libstr = "C:/Libraries/local/libfnft.dll"  # example for windows            
        * libstr = "/usr/local/lib/libfnft.so"  # example for linux

    """
    libstr = "/usr/local/lib/libfnft.so"  # example for linux
    return libstr

License

FNFTpy is provided under the terms of the GNU General Public License, version 2.

Contact and contributors

  • for bug reports, please use the github issue tracker

  • contributors: