-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
47 lines (41 loc) · 1.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import numpy as np
import scipy.sparse as sp
import numpy.ctypeslib as ctl
import os.path as osp
import random
from ctypes import c_int
from scipy.sparse import coo_matrix
from tqdm import tqdm
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
def get_params(model):
pp = 0
for p in list(model.parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
pp += nn
return pp
def label_node_homogeneity(G, node_index):
num_nodes = G.num_node
homophily = 0
for edge_u in tqdm(node_index):
hit = 0
# 遍历所有节点,通过边找出他们的邻居
edge_v_list = G.edge.col[torch.where(G.edge.row == edge_u)]
if len(edge_v_list) != 0:
for i in range(len(edge_v_list)):
edge_v = edge_v_list[i]
if G.y[edge_u] == G.y[edge_v]:
hit += 1
homophily += hit / len(edge_v_list)
homophily /= num_nodes
return homophily