-
Notifications
You must be signed in to change notification settings - Fork 252
/
ec.rs
1153 lines (1082 loc) · 35.2 KB
/
ec.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
// Copyright (c) 2017-2022, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
#![allow(non_camel_case_types)]
cfg_if::cfg_if! {
if #[cfg(nasm_x86_64)] {
pub use crate::asm::x86::ec::*;
} else {
pub use self::rust::*;
}
}
use crate::context::{CDFContext, CDFContextLog, CDFOffset};
use bitstream_io::{BigEndian, BitWrite, BitWriter};
use std::io;
pub const OD_BITRES: u8 = 3;
const EC_PROB_SHIFT: u32 = 6;
const EC_MIN_PROB: u32 = 4;
type ec_window = u32;
/// Public trait interface to a bitstream `Writer`: a `Counter` can be
/// used to count bits for cost analysis without actually storing
/// anything (using a new `WriterCounter` as a `Writer`), to record
/// tokens for later writing (using a new `WriterRecorder` as a
/// `Writer`) to write actual final bits out using a range encoder
/// (using a new `WriterEncoder` as a `Writer`). A `WriterRecorder`'s
/// contents can be replayed into a `WriterEncoder`.
pub trait Writer {
/// Write a symbol `s`, using the passed in cdf reference; leaves `cdf` unchanged
fn symbol<const CDF_LEN: usize>(&mut self, s: u32, cdf: &[u16; CDF_LEN]);
/// return approximate number of fractional bits in `OD_BITRES`
/// precision to write a symbol `s` using the passed in cdf reference;
/// leaves `cdf` unchanged
fn symbol_bits(&self, s: u32, cdf: &[u16]) -> u32;
/// Write a symbol `s`, using the passed in cdf reference; updates the referenced cdf.
fn symbol_with_update<const CDF_LEN: usize>(
&mut self, s: u32, cdf: CDFOffset<CDF_LEN>, log: &mut CDFContextLog,
fc: &mut CDFContext,
);
/// Write a bool using passed in probability
fn bool(&mut self, val: bool, f: u16);
/// Write a single bit with flat probability
fn bit(&mut self, bit: u16);
/// Write literal `bits` with flat probability
fn literal(&mut self, bits: u8, s: u32);
/// Write passed `level` as a golomb code
fn write_golomb(&mut self, level: u32);
/// Write a value `v` in `[0, n-1]` quasi-uniformly
fn write_quniform(&mut self, n: u32, v: u32);
/// Return fractional bits needed to write a value `v` in `[0, n-1]`
/// quasi-uniformly
fn count_quniform(&self, n: u32, v: u32) -> u32;
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite subexponential
fn write_subexp(&mut self, n: u32, k: u8, v: u32);
/// Return fractional bits needed to write symbol v in `[0, n-1]` with
/// parameter k as finite subexponential
fn count_subexp(&self, n: u32, k: u8, v: u32) -> u32;
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite
/// subexponential based on a reference `r` also in `[0, n-1]`.
fn write_unsigned_subexp_with_ref(&mut self, v: u32, mx: u32, k: u8, r: u32);
/// Return fractional bits needed to write symbol `v` in `[0, n-1]` with
/// parameter `k` as finite subexponential based on a reference `r`
/// also in `[0, n-1]`.
fn count_unsigned_subexp_with_ref(
&self, v: u32, mx: u32, k: u8, r: u32,
) -> u32;
/// Write symbol v in `[-(n-1), n-1]` with parameter k as finite
/// subexponential based on a reference ref also in `[-(n-1), n-1]`.
fn write_signed_subexp_with_ref(
&mut self, v: i32, low: i32, high: i32, k: u8, r: i32,
);
/// Return fractional bits needed to write symbol `v` in `[-(n-1), n-1]`
/// with parameter `k` as finite subexponential based on a reference
/// `r` also in `[-(n-1), n-1]`.
fn count_signed_subexp_with_ref(
&self, v: i32, low: i32, high: i32, k: u8, r: i32,
) -> u32;
/// Return current length of range-coded bitstream in integer bits
fn tell(&mut self) -> u32;
/// Return current length of range-coded bitstream in fractional
/// bits with `OD_BITRES` decimal precision
fn tell_frac(&mut self) -> u32;
/// Save current point in coding/recording to a checkpoint
fn checkpoint(&mut self) -> WriterCheckpoint;
/// Restore saved position in coding/recording from a checkpoint
fn rollback(&mut self, _: &WriterCheckpoint);
/// Add additional bits from rate estimators without coding a real symbol
fn add_bits_frac(&mut self, bits_frac: u32);
}
/// `StorageBackend` is an internal trait used to tie a specific `Writer`
/// implementation's storage to the generic `Writer`. It would be
/// private, but Rust is deprecating 'private trait in a public
/// interface' support.
pub trait StorageBackend {
/// Store partially-computed range code into given storage backend
fn store(&mut self, fl: u16, fh: u16, nms: u16);
/// Return bit-length of encoded stream to date
fn stream_bits(&mut self) -> usize;
/// Backend implementation of checkpoint to pass through Writer interface
fn checkpoint(&mut self) -> WriterCheckpoint;
/// Backend implementation of rollback to pass through Writer interface
fn rollback(&mut self, _: &WriterCheckpoint);
}
#[derive(Debug, Clone)]
pub struct WriterBase<S> {
/// The number of values in the current range.
rng: u16,
/// The number of bits of data in the current value.
cnt: i16,
#[cfg(feature = "desync_finder")]
/// Debug enable flag
debug: bool,
/// Extra offset added to `tell()` and `tell_frac()` to approximate costs
/// of actually coding a symbol
fake_bits_frac: u32,
/// Use-specific storage
s: S,
}
#[derive(Debug, Clone)]
pub struct WriterCounter {
/// Bits that would be shifted out to date
bits: usize,
}
#[derive(Debug, Clone)]
pub struct WriterRecorder {
/// Storage for tokens
storage: Vec<(u16, u16, u16)>,
/// Bits that would be shifted out to date
bits: usize,
}
#[derive(Debug, Clone)]
pub struct WriterEncoder {
/// A buffer for output bytes with their associated carry flags.
precarry: Vec<u16>,
/// The low end of the current range.
low: ec_window,
}
#[derive(Clone)]
pub struct WriterCheckpoint {
/// Stream length coded/recorded to date, in the unit used by the Writer,
/// which may be bytes or bits. This depends on the assumption
/// that a Writer will only ever restore its own Checkpoint.
stream_size: usize,
/// To be defined by backend
backend_var: usize,
/// Saved number of values in the current range.
rng: u16,
/// Saved number of bits of data in the current value.
cnt: i16,
}
/// Constructor for a counting Writer
impl WriterCounter {
#[inline]
pub const fn new() -> WriterBase<WriterCounter> {
WriterBase::new(WriterCounter { bits: 0 })
}
}
/// Constructor for a recording Writer
impl WriterRecorder {
#[inline]
pub const fn new() -> WriterBase<WriterRecorder> {
WriterBase::new(WriterRecorder { storage: Vec::new(), bits: 0 })
}
}
/// Constructor for a encoding Writer
impl WriterEncoder {
#[inline]
pub const fn new() -> WriterBase<WriterEncoder> {
WriterBase::new(WriterEncoder { precarry: Vec::new(), low: 0 })
}
}
/// The Counter stores nothing we write to it, it merely counts the
/// bit usage like in an Encoder for cost analysis.
impl StorageBackend for WriterBase<WriterCounter> {
#[inline]
fn store(&mut self, fl: u16, fh: u16, nms: u16) {
let (_l, r) = self.lr_compute(fl, fh, nms);
let d = r.leading_zeros() as usize;
self.s.bits += d;
self.rng = r << d;
}
#[inline]
fn stream_bits(&mut self) -> usize {
self.s.bits
}
#[inline]
fn checkpoint(&mut self) -> WriterCheckpoint {
WriterCheckpoint {
stream_size: self.s.bits,
backend_var: 0,
rng: self.rng,
// We do not use `cnt` within Counter, but setting it here allows the compiler
// to do a 32-bit merged load/store.
cnt: self.cnt,
}
}
#[inline]
fn rollback(&mut self, checkpoint: &WriterCheckpoint) {
self.rng = checkpoint.rng;
self.s.bits = checkpoint.stream_size;
}
}
/// The Recorder does not produce a range-coded bitstream, but it
/// still tracks the range coding progress like in an Encoder, as it
/// neds to be able to report bit costs for RDO decisions. It stores a
/// pair of mostly-computed range coding values per token recorded.
impl StorageBackend for WriterBase<WriterRecorder> {
#[inline]
fn store(&mut self, fl: u16, fh: u16, nms: u16) {
let (_l, r) = self.lr_compute(fl, fh, nms);
let d = r.leading_zeros() as usize;
self.s.bits += d;
self.rng = r << d;
self.s.storage.push((fl, fh, nms));
}
#[inline]
fn stream_bits(&mut self) -> usize {
self.s.bits
}
#[inline]
fn checkpoint(&mut self) -> WriterCheckpoint {
WriterCheckpoint {
stream_size: self.s.bits,
backend_var: self.s.storage.len(),
rng: self.rng,
cnt: self.cnt,
}
}
#[inline]
fn rollback(&mut self, checkpoint: &WriterCheckpoint) {
self.rng = checkpoint.rng;
self.cnt = checkpoint.cnt;
self.s.bits = checkpoint.stream_size;
self.s.storage.truncate(checkpoint.backend_var);
}
}
/// An Encoder produces an actual range-coded bitstream from passed in
/// tokens. It does not retain any information about the coded
/// tokens, only the resulting bitstream, and so it cannot be replayed
/// (only checkpointed and rolled back).
impl StorageBackend for WriterBase<WriterEncoder> {
fn store(&mut self, fl: u16, fh: u16, nms: u16) {
let (l, r) = self.lr_compute(fl, fh, nms);
let mut low = l + self.s.low;
let mut c = self.cnt;
let d = r.leading_zeros() as usize;
let mut s = c + (d as i16);
if s >= 0 {
c += 16;
let mut m = (1 << c) - 1;
if s >= 8 {
self.s.precarry.push((low >> c) as u16);
low &= m;
c -= 8;
m >>= 8;
}
self.s.precarry.push((low >> c) as u16);
s = c + (d as i16) - 24;
low &= m;
}
self.s.low = low << d;
self.rng = r << d;
self.cnt = s;
}
#[inline]
fn stream_bits(&mut self) -> usize {
self.s.precarry.len() * 8
}
#[inline]
fn checkpoint(&mut self) -> WriterCheckpoint {
WriterCheckpoint {
stream_size: self.s.precarry.len(),
backend_var: self.s.low as usize,
rng: self.rng,
cnt: self.cnt,
}
}
fn rollback(&mut self, checkpoint: &WriterCheckpoint) {
self.rng = checkpoint.rng;
self.cnt = checkpoint.cnt;
self.s.low = checkpoint.backend_var as ec_window;
self.s.precarry.truncate(checkpoint.stream_size);
}
}
/// A few local helper functions needed by the Writer that are not
/// part of the public interface.
impl<S> WriterBase<S> {
/// Internal constructor called by the subtypes that implement the
/// actual encoder and Recorder.
#[inline]
#[cfg(not(feature = "desync_finder"))]
const fn new(storage: S) -> Self {
WriterBase { rng: 0x8000, cnt: -9, fake_bits_frac: 0, s: storage }
}
#[inline]
#[cfg(feature = "desync_finder")]
fn new(storage: S) -> Self {
WriterBase {
rng: 0x8000,
cnt: -9,
debug: std::env::var_os("RAV1E_DEBUG").is_some(),
fake_bits_frac: 0,
s: storage,
}
}
/// Compute low and range values from token cdf values and local state
const fn lr_compute(&self, fl: u16, fh: u16, nms: u16) -> (ec_window, u16) {
let r = self.rng as u32;
debug_assert!(32768 <= r);
let mut u = (((r >> 8) * (fl as u32 >> EC_PROB_SHIFT))
>> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB * nms as u32;
if fl >= 32768 {
u = r;
}
let v = (((r >> 8) * (fh as u32 >> EC_PROB_SHIFT)) >> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB * (nms - 1) as u32;
(r - u, (u - v) as u16)
}
/// Given the current total integer number of bits used and the current value of
/// rng, computes the fraction number of bits used to `OD_BITRES` precision.
/// This is used by `od_ec_enc_tell_frac()` and `od_ec_dec_tell_frac()`.
/// `nbits_total`: The number of whole bits currently used, i.e., the value
/// returned by `od_ec_enc_tell()` or `od_ec_dec_tell()`.
/// `rng`: The current value of rng from either the encoder or decoder state.
/// Return: The number of bits scaled by `2**OD_BITRES`.
/// This will always be slightly larger than the exact value (e.g., all
/// rounding error is in the positive direction).
fn frac_compute(nbits_total: u32, mut rng: u32) -> u32 {
// To handle the non-integral number of bits still left in the encoder/decoder
// state, we compute the worst-case number of bits of val that must be
// encoded to ensure that the value is inside the range for any possible
// subsequent bits.
// The computation here is independent of val itself (the decoder does not
// even track that value), even though the real number of bits used after
// od_ec_enc_done() may be 1 smaller if rng is a power of two and the
// corresponding trailing bits of val are all zeros.
// If we did try to track that special case, then coding a value with a
// probability of 1/(1 << n) might sometimes appear to use more than n bits.
// This may help explain the surprising result that a newly initialized
// encoder or decoder claims to have used 1 bit.
let nbits = nbits_total << OD_BITRES;
let mut l = 0;
for _ in 0..OD_BITRES {
rng = (rng * rng) >> 15;
let b = rng >> 16;
l = (l << 1) | b;
rng >>= b;
}
nbits - l
}
const fn recenter(r: u32, v: u32) -> u32 {
if v > (r << 1) {
v
} else if v >= r {
(v - r) << 1
} else {
((r - v) << 1) - 1
}
}
#[cfg(feature = "desync_finder")]
fn print_backtrace(&self, s: u32) {
let mut depth = 3;
backtrace::trace(|frame| {
let ip = frame.ip();
depth -= 1;
if depth == 0 {
backtrace::resolve(ip, |symbol| {
if let Some(name) = symbol.name() {
println!("Writing symbol {} from {}", s, name);
}
});
false
} else {
true
}
});
}
}
/// Replay implementation specific to the Recorder
impl WriterBase<WriterRecorder> {
/// Replays the partially-computed range tokens out of the Recorder's
/// storage and into the passed in Writer, which may be an Encoder
/// or another Recorder. Clears the Recorder after replay.
pub fn replay(&mut self, dest: &mut dyn StorageBackend) {
for &(fl, fh, nms) in &self.s.storage {
dest.store(fl, fh, nms);
}
self.rng = 0x8000;
self.cnt = -9;
self.s.storage.truncate(0);
self.s.bits = 0;
}
}
/// Done implementation specific to the Encoder
impl WriterBase<WriterEncoder> {
/// Indicates that there are no more symbols to encode. Flushes
/// remaining state into coding and returns a vector containing the
/// final bitstream.
pub fn done(&mut self) -> Vec<u8> {
// We output the minimum number of bits that ensures that the symbols encoded
// thus far will be decoded correctly regardless of the bits that follow.
let l = self.s.low;
let mut c = self.cnt;
let mut s = 10;
let m = 0x3FFF;
let mut e = ((l + m) & !m) | (m + 1);
s += c;
if s > 0 {
let mut n = (1 << (c + 16)) - 1;
loop {
self.s.precarry.push((e >> (c + 16)) as u16);
e &= n;
s -= 8;
c -= 8;
n >>= 8;
if s <= 0 {
break;
}
}
}
let mut c = 0;
let mut offs = self.s.precarry.len();
// dynamic allocation: grows during encode
let mut out = vec![0_u8; offs];
while offs > 0 {
offs -= 1;
c += self.s.precarry[offs];
out[offs] = c as u8;
c >>= 8;
}
out
}
}
/// Generic/shared implementation for `Writer`s with `StorageBackend`s
/// (ie, `Encoder`s and `Recorder`s)
impl<S> Writer for WriterBase<S>
where
WriterBase<S>: StorageBackend,
{
/// Encode a single binary value.
/// `val`: The value to encode (0 or 1).
/// `f`: The probability that the val is one, scaled by 32768.
fn bool(&mut self, val: bool, f: u16) {
debug_assert!(0 < f);
debug_assert!(f < 32768);
self.symbol(u32::from(val), &[f, 0]);
}
/// Encode a single boolean value.
///
/// - `val`: The value to encode (`false` or `true`).
/// - `f`: The probability that the `val` is `true`, scaled by `32768`.
fn bit(&mut self, bit: u16) {
self.bool(bit == 1, 16384);
}
// fake add bits
fn add_bits_frac(&mut self, bits_frac: u32) {
self.fake_bits_frac += bits_frac
}
/// Encode a literal bitstring, bit by bit in MSB order, with flat
/// probability.
///
/// - 'bits': Length of bitstring
/// - 's': Bit string to encode
fn literal(&mut self, bits: u8, s: u32) {
for bit in (0..bits).rev() {
self.bit((1 & (s >> bit)) as u16);
}
}
/// Encodes a symbol given a cumulative distribution function (CDF) table in Q15.
///
/// - `s`: The index of the symbol to encode.
/// - `cdf`: The CDF, such that symbol s falls in the range
/// `[s > 0 ? cdf[s - 1] : 0, cdf[s])`.
/// The values must be monotonically non-decreasing, and the last value
/// must be greater than 32704. There should be at most 16 values.
/// The lower 6 bits of the last value hold the count.
#[inline(always)]
fn symbol<const CDF_LEN: usize>(&mut self, s: u32, cdf: &[u16; CDF_LEN]) {
debug_assert!(cdf[cdf.len() - 1] < (1 << EC_PROB_SHIFT));
let s = s as usize;
debug_assert!(s < cdf.len());
// The above is stricter than the following overflow check: s <= cdf.len()
let nms = cdf.len() - s;
let fl = if s > 0 {
// SAFETY: We asserted that s is less than the length of the cdf
unsafe { *cdf.get_unchecked(s - 1) }
} else {
32768
};
// SAFETY: We asserted that s is less than the length of the cdf
let fh = unsafe { *cdf.get_unchecked(s) };
debug_assert!((fh >> EC_PROB_SHIFT) <= (fl >> EC_PROB_SHIFT));
debug_assert!(fl <= 32768);
self.store(fl, fh, nms as u16);
}
/// Encodes a symbol given a cumulative distribution function (CDF)
/// table in Q15, then updates the CDF probabilities to reflect we've
/// written one more symbol 's'.
///
/// - `s`: The index of the symbol to encode.
/// - `cdf`: The CDF, such that symbol s falls in the range
/// `[s > 0 ? cdf[s - 1] : 0, cdf[s])`.
/// The values must be monotonically non-decreasing, and the last value
/// must be greater 32704. There should be at most 16 values.
/// The lower 6 bits of the last value hold the count.
fn symbol_with_update<const CDF_LEN: usize>(
&mut self, s: u32, cdf: CDFOffset<CDF_LEN>, log: &mut CDFContextLog,
fc: &mut CDFContext,
) {
#[cfg(feature = "desync_finder")]
{
if self.debug {
self.print_backtrace(s);
}
}
let cdf = log.push(fc, cdf);
self.symbol(s, cdf);
update_cdf(cdf, s);
}
/// Returns approximate cost for a symbol given a cumulative
/// distribution function (CDF) table and current write state.
///
/// - `s`: The index of the symbol to encode.
/// - `cdf`: The CDF, such that symbol s falls in the range
/// `[s > 0 ? cdf[s - 1] : 0, cdf[s])`.
/// The values must be monotonically non-decreasing, and the last value
/// must be greater than 32704. There should be at most 16 values.
/// The lower 6 bits of the last value hold the count.
fn symbol_bits(&self, s: u32, cdf: &[u16]) -> u32 {
let mut bits = 0;
debug_assert!(cdf[cdf.len() - 1] < (1 << EC_PROB_SHIFT));
debug_assert!(32768 <= self.rng);
let rng = (self.rng >> 8) as u32;
let fh = cdf[s as usize] as u32 >> EC_PROB_SHIFT;
let r: u32 = if s > 0 {
let fl = cdf[s as usize - 1] as u32 >> EC_PROB_SHIFT;
((rng * fl) >> (7 - EC_PROB_SHIFT)) - ((rng * fh) >> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB
} else {
let nms1 = cdf.len() as u32 - s - 1;
self.rng as u32
- ((rng * fh) >> (7 - EC_PROB_SHIFT))
- nms1 * EC_MIN_PROB
};
// The 9 here counteracts the offset of -9 baked into cnt. Don't include a termination bit.
let pre = Self::frac_compute((self.cnt + 9) as u32, self.rng as u32);
let d = r.leading_zeros() - 16;
let mut c = self.cnt;
let mut sh = c + (d as i16);
if sh >= 0 {
c += 16;
if sh >= 8 {
bits += 8;
c -= 8;
}
bits += 8;
sh = c + (d as i16) - 24;
}
// The 9 here counteracts the offset of -9 baked into cnt. Don't include a termination bit.
Self::frac_compute((bits + sh + 9) as u32, r << d) - pre
}
/// Encode a golomb to the bitstream.
///
/// - 'level': passed in value to encode
fn write_golomb(&mut self, level: u32) {
let x = level + 1;
let length = 32 - x.leading_zeros();
for _ in 0..length - 1 {
self.bit(0);
}
for i in (0..length).rev() {
self.bit(((x >> i) & 0x01) as u16);
}
}
/// Write a value `v` in `[0, n-1]` quasi-uniformly
/// - `n`: size of interval
/// - `v`: value to encode
fn write_quniform(&mut self, n: u32, v: u32) {
if n > 1 {
let l = 32 - n.leading_zeros() as u8;
let m = (1 << l) - n;
if v < m {
self.literal(l - 1, v);
} else {
self.literal(l - 1, m + ((v - m) >> 1));
self.literal(1, (v - m) & 1);
}
}
}
/// Returns `QOD_BITRES` bits for a value `v` in `[0, n-1]` quasi-uniformly
/// - `n`: size of interval
/// - `v`: value to encode
fn count_quniform(&self, n: u32, v: u32) -> u32 {
let mut bits = 0;
if n > 1 {
let l = 32 - n.leading_zeros();
let m = (1 << l) - n;
bits += (l - 1) << OD_BITRES;
if v >= m {
bits += 1 << OD_BITRES;
}
}
bits
}
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite subexponential
///
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `v`: value to encode
fn write_subexp(&mut self, n: u32, k: u8, v: u32) {
let mut i = 0;
let mut mk = 0;
loop {
let b = if i != 0 { k + i - 1 } else { k };
let a = 1 << b;
if n <= mk + 3 * a {
self.write_quniform(n - mk, v - mk);
break;
} else {
let t = v >= mk + a;
self.bool(t, 16384);
if t {
i += 1;
mk += a;
} else {
self.literal(b, v - mk);
break;
}
}
}
}
/// Returns `QOD_BITRES` bits for symbol `v` in `[0, n-1]` with parameter `k`
/// as finite subexponential
///
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `v`: value to encode
fn count_subexp(&self, n: u32, k: u8, v: u32) -> u32 {
let mut i = 0;
let mut mk = 0;
let mut bits = 0;
loop {
let b = if i != 0 { k + i - 1 } else { k };
let a = 1 << b;
if n <= mk + 3 * a {
bits += self.count_quniform(n - mk, v - mk);
break;
} else {
let t = v >= mk + a;
bits += 1 << OD_BITRES;
if t {
i += 1;
mk += a;
} else {
bits += (b as u32) << OD_BITRES;
break;
}
}
}
bits
}
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite
/// subexponential based on a reference `r` also in `[0, n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn write_unsigned_subexp_with_ref(&mut self, v: u32, n: u32, k: u8, r: u32) {
if (r << 1) <= n {
self.write_subexp(n, k, Self::recenter(r, v));
} else {
self.write_subexp(n, k, Self::recenter(n - 1 - r, n - 1 - v));
}
}
/// Returns `QOD_BITRES` bits for symbol `v` in `[0, n-1]`
/// with parameter `k` as finite subexponential based on a
/// reference `r` also in `[0, n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn count_unsigned_subexp_with_ref(
&self, v: u32, n: u32, k: u8, r: u32,
) -> u32 {
if (r << 1) <= n {
self.count_subexp(n, k, Self::recenter(r, v))
} else {
self.count_subexp(n, k, Self::recenter(n - 1 - r, n - 1 - v))
}
}
/// Write symbol `v` in `[-(n-1), n-1]` with parameter `k` as finite
/// subexponential based on a reference `r` also in `[-(n-1), n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn write_signed_subexp_with_ref(
&mut self, v: i32, low: i32, high: i32, k: u8, r: i32,
) {
self.write_unsigned_subexp_with_ref(
(v - low) as u32,
(high - low) as u32,
k,
(r - low) as u32,
);
}
/// Returns `QOD_BITRES` bits for symbol `v` in `[-(n-1), n-1]`
/// with parameter `k` as finite subexponential based on a
/// reference `r` also in `[-(n-1), n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn count_signed_subexp_with_ref(
&self, v: i32, low: i32, high: i32, k: u8, r: i32,
) -> u32 {
self.count_unsigned_subexp_with_ref(
(v - low) as u32,
(high - low) as u32,
k,
(r - low) as u32,
)
}
/// Returns the number of bits "used" by the encoded symbols so far.
/// This same number can be computed in either the encoder or the
/// decoder, and is suitable for making coding decisions. The value
/// will be the same whether using an `Encoder` or `Recorder`.
///
/// Return: The integer number of bits.
/// This will always be slightly larger than the exact value (e.g., all
/// rounding error is in the positive direction).
fn tell(&mut self) -> u32 {
// The 10 here counteracts the offset of -9 baked into cnt, and adds 1 extra
// bit, which we reserve for terminating the stream.
(((self.stream_bits()) as i32) + (self.cnt as i32) + 10) as u32
+ (self.fake_bits_frac >> 8)
}
/// Returns the number of bits "used" by the encoded symbols so far.
/// This same number can be computed in either the encoder or the
/// decoder, and is suitable for making coding decisions. The value
/// will be the same whether using an `Encoder` or `Recorder`.
///
/// Return: The number of bits scaled by `2**OD_BITRES`.
/// This will always be slightly larger than the exact value (e.g., all
/// rounding error is in the positive direction).
fn tell_frac(&mut self) -> u32 {
Self::frac_compute(self.tell(), self.rng as u32) + self.fake_bits_frac
}
/// Save current point in coding/recording to a checkpoint that can
/// be restored later. A `WriterCheckpoint` can be generated for an
/// `Encoder` or `Recorder`, but can only be used to rollback the `Writer`
/// instance from which it was generated.
fn checkpoint(&mut self) -> WriterCheckpoint {
StorageBackend::checkpoint(self)
}
/// Roll back a given `Writer` to the state saved in the `WriterCheckpoint`
///
/// - 'wc': Saved `Writer` state/posiiton to restore
fn rollback(&mut self, wc: &WriterCheckpoint) {
StorageBackend::rollback(self, wc)
}
}
pub trait BCodeWriter {
fn recenter_nonneg(&mut self, r: u16, v: u16) -> u16;
fn recenter_finite_nonneg(&mut self, n: u16, r: u16, v: u16) -> u16;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_quniform(&mut self, n: u16, v: u16) -> Result<(), std::io::Error>;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_subexpfin(
&mut self, n: u16, k: u16, v: u16,
) -> Result<(), std::io::Error>;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error>;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_s_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error>;
}
impl<W: io::Write> BCodeWriter for BitWriter<W, BigEndian> {
fn recenter_nonneg(&mut self, r: u16, v: u16) -> u16 {
/* Recenters a non-negative literal v around a reference r */
if v > (r << 1) {
v
} else if v >= r {
(v - r) << 1
} else {
((r - v) << 1) - 1
}
}
fn recenter_finite_nonneg(&mut self, n: u16, r: u16, v: u16) -> u16 {
/* Recenters a non-negative literal v in [0, n-1] around a
reference r also in [0, n-1] */
if (r << 1) <= n {
self.recenter_nonneg(r, v)
} else {
self.recenter_nonneg(n - 1 - r, n - 1 - v)
}
}
fn write_quniform(&mut self, n: u16, v: u16) -> Result<(), std::io::Error> {
if n > 1 {
let l = 16 - n.leading_zeros() as u8;
let m = (1 << l) - n;
if v < m {
self.write(l as u32 - 1, v)
} else {
self.write(l as u32 - 1, m + ((v - m) >> 1))?;
self.write(1, (v - m) & 1)
}
} else {
Ok(())
}
}
fn write_subexpfin(
&mut self, n: u16, k: u16, v: u16,
) -> Result<(), std::io::Error> {
/* Finite subexponential code that codes a symbol v in [0, n-1] with parameter k */
let mut i = 0;
let mut mk = 0;
loop {
let b = if i > 0 { k + i - 1 } else { k };
let a = 1 << b;
if n <= mk + 3 * a {
return self.write_quniform(n - mk, v - mk);
} else {
let t = v >= mk + a;
self.write_bit(t)?;
if t {
i += 1;
mk += a;
} else {
return self.write(b as u32, v - mk);
}
}
}
}
fn write_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error> {
/* Finite subexponential code that codes a symbol v in [0, n-1] with
parameter k based on a reference ref also in [0, n-1].
Recenters symbol around r first and then uses a finite subexponential code. */
let recentered_v = self.recenter_finite_nonneg(n, r as u16, v as u16);
self.write_subexpfin(n, k, recentered_v)
}
fn write_s_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error> {
/* Signed version of the above function */
self.write_refsubexpfin(
(n << 1) - 1,
k,
r + (n - 1) as i16,
v + (n - 1) as i16,
)
}
}
pub(crate) fn cdf_to_pdf<const CDF_LEN: usize>(
cdf: &[u16; CDF_LEN],
) -> [u16; CDF_LEN] {
let mut pdf = [0; CDF_LEN];
let mut z = 32768u16 >> EC_PROB_SHIFT;
for (d, &a) in pdf.iter_mut().zip(cdf.iter()) {
*d = z - (a >> EC_PROB_SHIFT);
z = a >> EC_PROB_SHIFT;
}
pdf
}
pub(crate) mod rust {
// Function to update the CDF for Writer calls that do so.
#[inline]
pub fn update_cdf<const N: usize>(cdf: &mut [u16; N], val: u32) {
use crate::context::CDF_LEN_MAX;
let nsymbs = cdf.len();
let mut rate = 3 + (nsymbs >> 1).min(2);
if let Some(count) = cdf.last_mut() {
rate += (*count >> 4) as usize;
*count += 1 - (*count >> 5);
} else {
return;
}
// Single loop (faster)
for (i, v) in
cdf[..nsymbs - 1].iter_mut().enumerate().take(CDF_LEN_MAX - 1)
{
if i as u32 >= val {
*v -= *v >> rate;
} else {
*v += (32768 - *v) >> rate;
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
const WINDOW_SIZE: i16 = 32;
const LOTS_OF_BITS: i16 = 0x4000;
#[derive(Debug)]
struct Reader<'a> {
buf: &'a [u8],
bptr: usize,
dif: ec_window,
rng: u16,
cnt: i16,
}
impl<'a> Reader<'a> {
fn new(buf: &'a [u8]) -> Self {
let mut r = Reader {
buf,
bptr: 0,
dif: (1 << (WINDOW_SIZE - 1)) - 1,
rng: 0x8000,
cnt: -15,
};
r.refill();
r
}
fn refill(&mut self) {
let mut s = WINDOW_SIZE - 9 - (self.cnt + 15);
while s >= 0 && self.bptr < self.buf.len() {
assert!(s <= WINDOW_SIZE - 8);
self.dif ^= (self.buf[self.bptr] as ec_window) << s;
self.cnt += 8;
s -= 8;
self.bptr += 1;
}
if self.bptr >= self.buf.len() {
self.cnt = LOTS_OF_BITS;
}
}