-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_Cons-Def_train.py
173 lines (145 loc) · 6.29 KB
/
mnist_Cons-Def_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""
This file used to train a model using augmented images with TensorFlow.
The augmentations are serially processed in data_exten.py
Revised from Cleverhans
Xintao Ding
School of Computer and Information, Anhui Normal University
"""#coding=utf-8
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import numpy as np
import tensorflow as tf
from cleverhans.compat import flags
from cleverhans.loss import CrossEntropy
from cleverhans.dataset import MNIST
from cleverhans.utils_tf import model_eval
from cleverhans.train import train
from cleverhans.utils import AccuracyReport, set_log_level
from cleverhans.model_zoo.basic_cnn import ModelBasicCNN
#from cleverhans.model_zoo.four_conv2FC import Model4Convolutional2FC#Revised by Ding
from cleverhans.data_exten import data_exten#intensity exchange-based data augmentation
from sklearn.metrics import roc_curve, roc_auc_score#Added by Ding
FLAGS = flags.FLAGS
NB_EPOCHS = 50
BATCH_SIZE = 128
LEARNING_RATE = 0.001
BACKPROP_THROUGH_ATTACK = False
NB_FILTERS = 64
def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
test_end=10000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
# testing=True,
backprop_through_attack=BACKPROP_THROUGH_ATTACK,
nb_filters=NB_FILTERS, num_threads=None,
label_smoothing=0.1):
"""
MNIST cleverhans tutorial
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param backprop_through_attack: If True, backprop through adversarial
example construction process during
adversarial training.
:param label_smoothing: float, amount of label smoothing for cross entropy
:return: an AccuracyReport object
"""
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
np.random.seed(1234)
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Create TF session
if num_threads:
config_args = dict(intra_op_parallelism_threads=1)
else:
config_args = {}
sess = tf.Session(config=tf.ConfigProto(**config_args))
# Get MNIST data
mnist = MNIST(train_start=train_start, train_end=train_end,
test_start=test_start, test_end=test_end)
x_train, y_train = mnist.get_set('train')
###############extend train dataset
print("x_train:{}".format(x_train.shape))
x_test, y_test = mnist.get_set('test')
# Use Image Parameters
print("y_train_shape:{}".format(y_train.shape))#########################################
img_rows, img_cols, nchannels = x_train.shape[1:4]
nb_classes = y_train.shape[1]
# augment training set======Added by Ding
x_train, y_train = data_exten(x_train, y_train, train_end, nb_classes, img_rows, img_cols, 1)
print("nb_classes:{}".format(nb_classes))#########################################
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
nchannels))
y = tf.placeholder(tf.float32, shape=(None, nb_classes))
# Train an MNIST model
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate
}
eval_params = {'batch_size': batch_size}
rng = np.random.RandomState([2017, 8, 30])
def do_eval(x_set, y_set, preds, report_key, is_adv=None):
acc, suc_att_exam = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
setattr(report, report_key, acc)
if is_adv is None:
report_text = None
elif is_adv:
report_text = 'adversarial'
else:
report_text = 'legitimate'
if report_text:
print('Test accuracy on %s examples: %0.4f' % (report_text, acc))
return acc, suc_att_exam
model = ModelBasicCNN('model1', nb_classes, nb_filters)
# model = Model4Convolutional2FC('model1', nb_classes, nb_filters, input_shape=[28, 28, 1])
preds = model.get_logits(x)
# loss = CrossEntropy(model, smoothing=label_smoothing)
loss = CrossEntropy(model)
saver = tf.train.Saver()
def evaluate():
do_eval(x_test, y_test, preds, 'clean_train_clean_eval', False)
#########################################Added by Ding
print("aaaaaaaaaaaaaaaaa=************************************")
train(sess, loss, x_train, y_train, evaluate=evaluate,
args=train_params, rng=rng, var_list=model.get_params())
saver.save(sess,'./models/mnist_models/mnist_train_2_4_8_16_32Aug50iters')
print("aaaaaaaaaaaaaaaaa=+++++++++++++++++++++++++++++")
#########################################
# Evaluate the accuracy of the MNIST model on adversarial examples
accuracy,suc_att_exam = do_eval(x_test, y_test, preds, 'clean_train_adv_eval', False)
def main(argv=None):
"""
Run the tutorial using command line flags.
"""
from cleverhans_tutorials import check_installation
check_installation(__file__)
mnist_tutorial(nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
backprop_through_attack=FLAGS.backprop_through_attack,
nb_filters=FLAGS.nb_filters)
if __name__ == '__main__':
flags.DEFINE_integer('nb_filters', NB_FILTERS,
'Model size multiplier')
flags.DEFINE_integer('nb_epochs', NB_EPOCHS,
'Number of epochs to train model')
flags.DEFINE_integer('batch_size', BATCH_SIZE,
'Size of training batches')
flags.DEFINE_float('learning_rate', LEARNING_RATE,
'Learning rate for training')
flags.DEFINE_bool('backprop_through_attack', BACKPROP_THROUGH_ATTACK,
('If True, backprop through adversarial example '
'construction process during adversarial training'))
tf.app.run()