-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_Cons-Def_jsma_defense_untargeted.py
429 lines (356 loc) · 19.9 KB
/
mnist_Cons-Def_jsma_defense_untargeted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""
This tutorial shows how to implement Cons-Def against JSMA white-box attacks.
Xintao Ding
School of Computer and Information, Anhui Normal University
"""
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from cleverhans.attacks import SaliencyMapMethod
from cleverhans.compat import flags
from cleverhans.dataset import MNIST
from cleverhans.utils import other_classes, set_log_level
from cleverhans.utils import pair_visual, grid_visual, AccuracyReport
from cleverhans.utils_tf import model_eval, model_argmax
from cleverhans.model_zoo.basic_cnn import ModelBasicCNN
#Added by Ding
#from tensorflow.python import pywrap_tensorflow
from cleverhans.data_exten import data_exten
from sklearn.metrics import roc_curve, roc_auc_score#Added by Ding
FLAGS = flags.FLAGS
VIZ_ENABLED = False#True
BATCH_SIZE = 128
LEARNING_RATE = 0.001
SOURCE_SAMPLES = 1000
def mnist_tutorial_jsma(train_start=0, train_end=60000, test_start=0,
test_end=10000, viz_enabled=VIZ_ENABLED,
batch_size=BATCH_SIZE,
source_samples=SOURCE_SAMPLES,
learning_rate=LEARNING_RATE):
"""
MNIST tutorial for the Jacobian-based saliency map approach (JSMA)
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:param viz_enabled: (boolean) activate plots of adversarial examples
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param nb_classes: number of output classes
:param source_samples: number of test inputs to attack
:param learning_rate: learning rate for training
:return: an AccuracyReport object
"""
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Create TF session
sess = tf.Session()
print("Created TensorFlow session.")
# Get MNIST data
mnist = MNIST(train_start=train_start, train_end=train_end,
test_start=test_start, test_end=test_end)
x_train, y_train = mnist.get_set('train')
x_test, y_test = mnist.get_set('test')
# Use Image Parameters
print("y_train_shape:{}".format(y_train.shape))#########################################
img_rows, img_cols, nchannels = x_train.shape[1:4]
nb_classes = y_train.shape[1]
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
y = tf.placeholder(tf.float32, shape=(None, nb_classes))
nb_filters = 64
# Define TF model graph
model = ModelBasicCNN('model1', nb_classes, nb_filters)
preds = model.get_logits(x)
print("Defined TensorFlow model graph.")
# loss = CrossEntropy(model, smoothing=label_smoothing)
#########################################Added by Ding
print("aaaaaaaaaaaaaaaaa=+++++++++++++++++++++++++++++")
saver = tf.train.Saver()
print("aaaaaaaaaaaaaaaaa=--------------------------------")
saver.restore(sess,'./cifar10_extensions/mnist_models/mnist_train_2_4_8_16_32Aug50iters')
print("aaaaaaaaaaaaaaaaa=************************************")
eval_params = {'batch_size': batch_size}
# rng = np.random.RandomState([2017, 8, 30])
accuracy, suc_att_exam = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
assert x_test.shape[0] == test_end - test_start, x_test.shape
print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
report.clean_train_clean_eval = accuracy
###########################################################################
# Craft adversarial examples using the Jacobian-based saliency map approach
###########################################################################
print('Crafting ' + str(source_samples) + ' * ' + str(nb_classes - 1) + ' adversarial examples')
# Keep track of success (adversarial example classified in target)
results = np.zeros((1, source_samples), dtype='i')
auc = np.zeros((1, source_samples), dtype='i')
dsae = np.zeros((1, source_samples), dtype='f')
# Rate of perturbed features for each test set example and target class
perturbations = np.zeros((1, source_samples), dtype='f')
# Initialize our array for grid visualization
grid_shape = (nb_classes, nb_classes, img_rows, img_cols, nchannels)
grid_viz_data = np.zeros(grid_shape, dtype='f')
# Instantiate a SaliencyMapMethod attack object
jsma = SaliencyMapMethod(model, sess=sess)
jsma_params = {'theta': 1., 'gamma': 0.1,
'clip_min': 0., 'clip_max': 1.,
'y_target': None}
figure = None
#####################################################################
#Randomly select source_samples samples in x_test
test_ind=np.random.randint(0,x_test.shape[0],source_samples)
x_test=x_test[test_ind,:,:,:]
y_test=y_test[test_ind]
accuracy, suc_att_exam = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
print("xxxxxxxxxxxxxxxxxxxxxxxxxxxx_test:{}",x_test.shape)
#####################################################################
adv = np.zeros((np.shape(x_test)), dtype='f')
# Loop over the samples we want to perturb into adversarial examples
for sample_ind in xrange(0, source_samples):
print('--------------------------------------')
print('Attacking input %i/%i' % (sample_ind + 1, source_samples))
sample = x_test[sample_ind:(sample_ind + 1)]
# We want to find an adversarial example for each possible target class
# (i.e. all classes that differ from the label given in the dataset)
current_class = int(np.argmax(y_test[sample_ind]))
target_classes = other_classes(nb_classes, current_class)
target = target_classes[np.random.randint(0,len(target_classes),1)[0]]
# For the grid visualization, keep original images along the diagonal
grid_viz_data[current_class, current_class, :, :, :] = np.reshape(sample, (img_rows, img_cols, nchannels))
# Loop over all target classes
print('Generating adv. example for target class %i' % target)
# This call runs the Jacobian-based saliency map approach
one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
one_hot_target[0, target] = 1
jsma_params['y_target'] = one_hot_target
adv_x = jsma.generate_np(sample, **jsma_params)
###################################################
adv_x1=adv_x[0,:,:]
sample1=sample[0,:,:]
dsaeij=(np.sum((adv_x1 - sample1)**2)**.5)/adv_x1.shape[0]/adv_x1.shape[1]
print("==============Avg. distortion of successful adversarial examples wether it can or cannot fool the model:{}".format(dsaeij))
###################################################
# Check if success was achieved
netpred = model_argmax(sess, x, preds, adv_x)
res = int(netpred == target)
acc = int(netpred == current_class)
# Compute number of modified features
adv_x_reshape = adv_x.reshape(-1)
test_in_reshape = x_test[sample_ind].reshape(-1)
nb_changed = np.where(adv_x_reshape != test_in_reshape)[0].shape[0]
percent_perturb = float(nb_changed) / adv_x.reshape(-1).shape[0]#ratio of attacked pixels to image size
print("nb_changed:{}".format(nb_changed))
# Display the original and adversarial images side-by-side
if viz_enabled:
figure = pair_visual(
np.reshape(sample, (img_rows, img_cols, nchannels)),
np.reshape(adv_x, (img_rows, img_cols, nchannels)), figure)
# Add our adversarial example to our grid data
grid_viz_data[target, current_class, :, :, :] = np.reshape(
adv_x, (img_rows, img_cols, nchannels))
# Update the arrays for later analysis,res is true if the targeted attack is successful
results[0, sample_ind] = res
auc[0, sample_ind] = acc
dsae[0, sample_ind] = dsaeij
adv[sample_ind,:,:,:] = adv_x1
#Matrix, For an i-th targeted attack, perturbations[i,j] is the ratio of attacked pixels to the size of the j-th sample.
perturbations[0, sample_ind] = percent_perturb
print('--------------------------------------')
print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
# Compute the number of adversarial examples that were successfully found
nb_targets_tried = source_samples
succ_rate = float(np.sum(results)) / nb_targets_tried
acc = float(np.sum(auc)) / nb_targets_tried
print("Test accuracy on adversarial examples: {}".format(acc))
print('Avg. rate of successful adv. examples / ASR {}'.format(succ_rate))
print('For untargeted attack, the number of misclassified examples: sum(results==0):{}'.format(np.sum(results==0)))
report.clean_train_adv_eval = 1. - succ_rate
wheresae=np.where(dsae>0)#The successful adv. example is different from clean example
avg_dsae=np.mean(dsae[wheresae])
print('Avg. L_2 norm of perturbations (Avg. Distortion on successful adv. examples): {0:.4f}'.format(avg_dsae))
# print("77777777777777777777777777:{}".format(results))
avg_dsae_foolmod=0
k=0
for i in xrange(0, source_samples):
# print("i={}".format(i))
if results[0,i]>0:
# print("results[j,i]:{},meanperturb[j,i]:{},meandist:{},k:{}".format(results[j,i],meanperturb[j,i],meandist,k))
avg_dsae_foolmod=avg_dsae_foolmod+dsae[0,i]
k=k+1
if k>0:
avg_dsae_foolmod=avg_dsae_foolmod/k
print('Avg. Distortion on successful adv. examples that fool model/ D-SAE {0:.4f}'.format(avg_dsae_foolmod))
# Compute the average distortion introduced by the algorithm, percent_perturbed is the perturbed images
percent_perturbed = np.mean(perturbations[np.where(perturbations!=0)])
print('perturbation ratio of the number of pixels that their intensity have been changed to the number of image pixels {}'.format(np.mean(perturbations)))
print('Avg. perturbation ratio on the dataset {0:.4f}'.format(percent_perturbed))
# Compute the average distortion introduced for successful samples only
percent_perturb_succ = np.mean(perturbations[np.where(perturbations!=0)] * (results[np.where(perturbations!=0)] == 1))
print('Avg. rate of perturbed features for successful '
'adversarial examples {0:.4f}'.format(percent_perturb_succ))
# adv = np.round(adv*256)/256.0
adv34 = np.zeros((len(adv),6+img_rows,6+img_rows,1),dtype=np.float32)
advcrop = np.zeros((len(adv),img_rows,img_cols,1),dtype=np.float32)
adv34[:,3:31,3:31,:] = adv
for i in range(len(adv)):
tf_image = adv34[i,:,:,:]
lu1 = np.random.randint(0,6)
lu2 = np.random.randint(0,6)
advcrop[i,:,:,:] = tf_image[lu1:lu1+img_rows,lu2:lu2+img_cols,:]
adv = advcrop
n_pert = 5
n_exam = len(adv)
x_adv_extended, y_adv_extended = data_exten(adv, y_test, n_exam, nb_classes, img_rows, img_cols, 1)#
x_adv_pertpart = x_adv_extended[:n_pert*n_exam,:,:,:]
y_adv_pertpart = y_adv_extended[:n_pert*n_exam,:]
n_exam = len(y_test)
x_test_extended, y_test_extended = data_exten(x_test, y_test, n_exam, nb_classes, img_rows, img_cols, 1)
x_test_pertpart = x_test_extended[:n_pert*n_exam,:,:,:]
y_test_pertpart = y_test_extended[:n_pert*n_exam,:]
acc_ext,suc_att_ext = model_eval(sess, x, y, preds, x_test_pertpart, y_test_pertpart, args=eval_params)
print('Test accuracy on legitimate examples extened by x_test: %0.4f' % (acc_ext))
# print("JSMA attack on images extened by adv of x_test")
# acc_adv_ext,suc_att_adv_ext = model_eval(sess, x, y, preds, adv_ext, y_adv_pertpart, args=eval_params)
# print('Test accuracy on adversarial examples: %0.4f' % (acc_adv_ext))
acc_adv_ext,suc_att_adv_ext = model_eval(sess, x, y, preds, x_adv_pertpart, y_adv_pertpart, args=eval_params)
print('Test accuracy on extended examples of adversarials: %0.4f' % (acc_adv_ext))
eva_thresh = np.linspace(3,5,3).astype('int32')#5 aug test
feed_dict = {x: x_test_pertpart}
y_pertpart_pred = sess.run(preds,feed_dict=feed_dict)
probs = model.get_probs(x)
y_pertpart_prob = sess.run(probs,feed_dict=feed_dict)
auc_score_test = roc_auc_score(y_test_pertpart, y_pertpart_prob)
cur_preds = np.argmax(y_pertpart_pred, axis=1)
cur_preds = np.reshape(cur_preds,(len(y_test_pertpart)//n_pert,n_pert),order='F')
feed_dict = {x: x_adv_pertpart}
y_adv_pertpart_pred = sess.run(preds,feed_dict=feed_dict)
y_pertpart_prob_adv = sess.run(probs,feed_dict=feed_dict)
auc_score_adv = roc_auc_score(y_adv_pertpart, y_pertpart_prob_adv)
print("auc_score_test:{},auc_score_adv:{}".format(auc_score_test, auc_score_adv))
cur_preds_adv = np.argmax(y_adv_pertpart_pred, axis=1)
cur_preds_adv = np.reshape(cur_preds_adv,(len(y_adv_pertpart)//n_pert,n_pert),order='F')
test_result_stat=np.zeros((n_pert+1,),dtype=np.float32)
adv_result_stat=np.zeros((n_pert+1,),dtype=np.float32)
len_thresh = len(eva_thresh)
distrib_incons_preds = np.zeros((len_thresh,n_pert),dtype=np.int32)
distrib_incons_preds_adv = np.zeros((len_thresh,n_pert),dtype=np.int32)
y_test5=np.argmax(y_test_pertpart,axis=1)
y_test5=np.reshape(y_test5,(len(y_test_pertpart)//n_pert,n_pert),order='F')
auc_div_mat = np.zeros((len(cur_preds),n_pert+1),dtype=np.int32)
auc_div_mat_adv = np.zeros((len(cur_preds),n_pert+1),dtype=np.int32)
for i in range(len(cur_preds)):
temp = np.sum(np.equal(cur_preds[i,:],y_test5[i,:]))
auc_div_mat[i,temp] = 1
test_result_stat[temp] = test_result_stat[temp]+1
a = np.unique(cur_preds[i,:])
for j in range(len_thresh):
if temp<eva_thresh[j]:
kk = []
for k in range(len(a)):
kk.extend([np.sum(cur_preds[i,:]==a[k])])
ind = np.max(np.array(kk))
distrib_incons_preds[j,ind-1] = distrib_incons_preds[j,ind-1]+1
y_test5=np.argmax(y_adv_pertpart,axis=1)
y_test5=np.reshape(y_test5,(len(y_adv_pertpart)//n_pert,n_pert),order='F')
for i in range(len(cur_preds_adv)):
temp = np.sum(np.equal(cur_preds_adv[i,:],y_test5[i,:]))
auc_div_mat_adv[i,temp] = 1
adv_result_stat[temp] = adv_result_stat[temp]+1#there is a inconsensus detection results of the 27 perturbations
a = np.unique(cur_preds_adv[i,:])
for j in range(len_thresh):
if temp<eva_thresh[j]:
kk = []
for k in range(len(a)):
kk.extend([np.sum(cur_preds_adv[i,:]==a[k])])
ind = np.max(np.array(kk))
distrib_incons_preds_adv[j,ind-1] = distrib_incons_preds_adv[j,ind-1]+1
#For a benign, thare are n_pert extension images.
#And there are n_pert classifications of the extension of a benign. They may be different or same
#The maximum occurrence of the classification labels is called consistent rank.
#e.g., n_pert=5, and the classification labels of a benign are (0, 2, 2, 1, 2), then the consistent rank of the benign is 3 that is the occurrence of the label 2.
#Furthermore, correct consistent rank is the number of the extensions of a benign that are correctly classified
#test_result_stat[i]=k
#i: correct consistent rank, i=0, 1, 2, ..., n_pert-1
#k is the count of the correct consistent rank i on test images
print("test_result_stat:{},{}".format(np.sum(test_result_stat),test_result_stat))
print("adv_result_stat:{},{}".format(np.sum(adv_result_stat),adv_result_stat))
for i in range(len_thresh):
#distrib_incons_preds3 is the count of consistent rank on the test images with correct consistent rank less than 3
print("test_result cannot be classified stat (Threshold {}):{},{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,:]),distrib_incons_preds[i,:]))
#distrib_incons_preds4 is the count of consistent rank on the test images with correct consistent rank less than 4
# print("test_result cannot be classified stat (Threshold 4):{},{}".format(np.sum(distrib_incons_preds4),distrib_incons_preds4))
#classfication: a benign with N(consistent rank)>=3 is labeled consistent rank
#The number of correctly classified benign is N(correct consistent rank)>=3
print("The number of benigns that are correctly classified (Threshold {}):{}".format(eva_thresh[i],np.sum(test_result_stat[eva_thresh[i]-len(adv_result_stat):])))
#The number of incorrectly classified benign is the cardinality of the set {example | N(consistent rank)>=3, true-label(example)~=consistent rank}
print("The number of benigns that are misclassified (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,eva_thresh[i]-len(adv_result_stat):])))
print("The number of benigns that are incorrectly detected as adv (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,:eva_thresh[i]-1])))
print("adv_result cannot be classifed stat (Threshold {}):{},{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,:]),distrib_incons_preds_adv[i,:]))
print("The number of adv that are correctly classified (Threshold {}):{}".format(eva_thresh[i],np.sum(adv_result_stat[eva_thresh[i]-len(adv_result_stat):])))
print("The number of adv that are misclassified (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,eva_thresh[i]-len(adv_result_stat):])))
print("The number of adv that are correctly detected as adv (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,:eva_thresh[i]-1])))
####calculate auc
benign_ind_clc = np.argwhere(np.sum(auc_div_mat[:,eva_thresh[i]:],axis=1)==1)[:,0]
adv_ind_clc = np.argwhere(np.sum(auc_div_mat_adv[:,eva_thresh[i]:],axis=1)==1)[:,0]
benign_inds = benign_ind_clc
adv_inds = adv_ind_clc
for j in range(1,n_pert):
benign_inds = np.concatenate((benign_inds, benign_ind_clc + source_samples*j), axis=0)
adv_inds = np.concatenate((adv_inds, adv_ind_clc + source_samples*j), axis=0)
ground_labels = y_test_pertpart[tuple(benign_inds),:]
del_ind=[]
for j in range(nb_classes):
if np.sum(ground_labels[:,j])==0:
del_ind.append(j)
del_ind = np.array(del_ind)
ground_labels = np.delete(ground_labels,del_ind,axis=1)
preded_probs = y_pertpart_prob[tuple(benign_inds),:]
preded_probs = np.delete(preded_probs,del_ind,axis=1)
auc_score_clc_bn = roc_auc_score(ground_labels, preded_probs)
ground_labels_adv = y_adv_pertpart[tuple(adv_inds),:]
del_ind=[]
for j in range(nb_classes):
if np.sum(ground_labels_adv[:,j])==0:
del_ind.append(j)
del_ind = np.array(del_ind)
ground_labels_adv = np.delete(ground_labels_adv,del_ind,axis=1)
preded_probs_adv = y_pertpart_prob_adv[tuple(adv_inds),:]
preded_probs_adv = np.delete(preded_probs_adv,del_ind,axis=1)
auc_score_clc_adv = roc_auc_score(ground_labels_adv, preded_probs_adv)
# auc_score_clc_adv = roc_auc_score(y_adv_pertpart[tuple(adv_inds),:], y_pertpart_prob_adv[tuple(adv_inds),:])
print("(Threshold {}:) auc_score_clc_bn:{},auc_score_clc_adv:{}".format(eva_thresh[i],auc_score_clc_bn, auc_score_clc_adv))
print('sssss')
# Close TF session
sess.close()
# Finally, block & display a grid of all the adversarial examples
if viz_enabled:
import matplotlib.pyplot as plt
plt.close(figure)
_ = grid_visual(grid_viz_data)
return report
def main(argv=None):
from cleverhans_tutorials import check_installation
check_installation(__file__)
mnist_tutorial_jsma(viz_enabled=FLAGS.viz_enabled,
batch_size=FLAGS.batch_size,
source_samples=FLAGS.source_samples,
learning_rate=FLAGS.learning_rate)
if __name__ == '__main__':
flags.DEFINE_boolean('viz_enabled', VIZ_ENABLED,
'Visualize adversarial ex.')
flags.DEFINE_integer('batch_size', BATCH_SIZE, 'Size of training batches')
flags.DEFINE_integer('source_samples', SOURCE_SAMPLES,
'Nb of test inputs to attack')
flags.DEFINE_float('learning_rate', LEARNING_RATE,
'Learning rate for training')
tf.app.run()