-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
127 lines (110 loc) · 4.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
from torch.autograd import Function
import torchvision.models as models
import ctlib_v2
class prj_module(nn.Module):
def __init__(self):
super(prj_module, self).__init__()
self.weight = nn.Parameter(torch.Tensor(1))
self.w = nn.Parameter(torch.Tensor([[-0.8955, 0, -2.6443, 0.5331, 1.5326, 0, 0]]).t(), requires_grad=False)
self.b = nn.Parameter(torch.Tensor([1.0363]), requires_grad=False)
# self.w = nn.Parameter(torch.Tensor([[-1.6743, 0, 0, -1.2753, 0, -0.2185, 0]]).t(), requires_grad=False)
# self.b = nn.Parameter(torch.Tensor([1.9305]), requires_grad=False)
def forward(self, input_data, proj, options, gamma, beta, feature_vec):
weight = self.weight * gamma + beta
weight.unsqueeze_(-1)
maxval = torch.mm(feature_vec, self.w) + self.b
le = weight.detach().le(maxval).float()
w = le * weight + (1 - le) * maxval
clamped_weight = w.clamp_min(0.01).view(input_data.size(0), 1, 1, 1)
# weight = weight.view(weight.size(0), 1, 1, 1)
return prj_fun.apply(input_data, clamped_weight, proj, options)
class prj_fun(Function):
@staticmethod
def forward(self, input_data, weight, proj, options):
temp_prj = ctlib_v2.projection(input_data, options)
temp = []
for i in range(input_data.size(0)):
temp.append(temp_prj[i] - proj[i])
intervening_res = ctlib_v2.backprojection(temp, options).float()
self.save_for_backward(intervening_res, weight, options)
out = input_data - weight * intervening_res
return out
@staticmethod
def backward(self, grad_output):
intervening_res, weight, options = self.saved_tensors
temp = ctlib_v2.projection(grad_output, options)
temp = ctlib_v2.backprojection(temp, options)
grad_input = grad_output - weight * temp
temp = intervening_res * grad_output
grad_weight = - temp.sum((2,3), keepdim=True)
return grad_input, grad_weight, None, None
class ConvBlock(nn.Module):
def __init__(self):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(64, 1, kernel_size=3, padding=1)
def forward(self, x, gamma_vec, beta_vec):
gamma0 = gamma_vec[:,0:64].view(x.size(0), 64, 1, 1)
beta0 = beta_vec[:,0:64].view(x.size(0), 64, 1, 1)
gamma1 = gamma_vec[:,64:128].view(x.size(0), 64, 1, 1)
beta1 = beta_vec[:,64:128].view(x.size(0), 64, 1, 1)
gamma2 = gamma_vec[:,128].view(x.size(0), 1, 1, 1)
beta2 = beta_vec[:,128].view(x.size(0), 1, 1, 1)
out = self.conv1(x)
out = out * gamma0 + beta0
out = self.relu1(out)
out = self.conv2(out)
out = out * gamma1 + beta1
out = self.relu2(out)
out = self.conv3(out)
out = out * gamma2 + beta2
return out
class IterBlock(nn.Module):
def __init__(self):
super(IterBlock, self).__init__()
self.block1 = prj_module()
self.block2 = ConvBlock()
self.relu = nn.ReLU(inplace=True)
def forward(self, input_data, proj, options, gamma_vec, beta_vec, feature_vec):
gamma0 = gamma_vec[:, 0]
beta0 = beta_vec[:, 0]
gamma1 = gamma_vec[:, 1:]
beta1 = beta_vec[:, 1:]
tmp1 = self.block1(input_data, proj, options, gamma0, beta0, feature_vec)
tmp2 = self.block2(input_data, gamma1, beta1)
output = tmp1 + tmp2
output = self.relu(output)
return output
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
nn.Linear(7, 256, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5, inplace=False),
nn.Linear(256, 512, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5, inplace=False),
nn.Linear(512, 260, bias=True)
)
def forward(self, x):
out = self.model(x)
out1 = out[:,:130]
out2 = out[:,130:]
return out1, out2
class Learn(nn.Module):
def __init__(self, block_num):
super(Learn, self).__init__()
self.model = nn.ModuleList([IterBlock() for i in range(block_num)])
self.MLP = MLP()
def forward(self, input_data, proj, options, feature_vec):
x = input_data
gamma, beta = self.MLP(feature_vec)
for index, module in enumerate(self.model):
x = module(x, proj, options, gamma, beta, feature_vec)
return x